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ταῦτα$%ὲν$ἐς$τοὺς$οἰκη/ους$ὁ$Κα%β4σης$ἐξε%8νη,$εἴτε$δὴ$διὰ$τὸν$Ἆπιν$εἴτε.$
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Chapter 1
Introduction

“Isn’t it remarkable,” I occasionally think, “that the human brain is too complex to be
fully captured by our own minds? Doesn’t that explain why all of our current insights on
its functioning are expressed as extensive simplifications? Is our language even capable
of articulating the vast amount of neurons and their numerous interactions?” In this last
question lies, I believe, the main motivation for conducting mathematical neuroscience: by
identifying processes with symbols and equations, one becomes less dependent on their
imagination to overcome difficulties — one can rely on mathematical identities instead.

As a second thought, it seems that neither the number of processes, nor the spatial
and temporal scales on which these act, render the brain more complex than many other
systems, but rather the number of scales at which a single process acts. A sole neuron, for
instance, might connect to both a neighboring neuron, having a separation of only several
micrometers, and to a distant neuron in the spinal cord, about one meter away. Contrast
this, for example, to an atmospheric model: although the model extends over many more
scales, from jet streams of thousands of kilometers down to properties of gases and fluids
at a molecular level, the majority of processes interacts only with others at a similar scale1.

Since no single model would be able to capture all scales of the brain simultaneously
— from ions and proteins to the whole body and from microsceconds to a life’s span — a
collection of models is required instead: models which represent a caricature of a certain
process or phenomenom. Here, the concept of ‘model’ should be interpreted in its widest
sense, since the model hierarchy should, next to mathematical models, also include animal,
in vivo and in vitro models. By developing such a framework of models, one would ideally
be able to select, depending on the interest one has, a subset of relevant processes and
combine the corresponding models to study the phenomenon at hand.

The multiscale nature of the system, however, is likely to interfere with the merging
of models. A prevalent method for incorporating processes occuring at smaller or faster

1 In this respect, it becomes apparent why the phenomenon of lightning is still poorly understood: its scales
range from quantum effects of plasma formation to the kilometers of height.
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2 1 Introduction

scales in a model is called averaging, or lumping: only the global properties of a large
number of underlying processes are considered, rather than all the individual processes. It
appears that numerous processes in the brain are particularly suitable for lumping, like the
thermodynamic limits which are widely used to describe the voltage-gated ion channels
on the cell membrane, but many others, especially those involving multiple scales, are not.
Unfortunately, not only is lumping impracticable at every scale, also data acquisition and
imaging techniques are hampered by the multiscale nature of the system. The lack of data
with respect to a specific scale inhibits the validation of the lumping at that scale, resulting
in a ‘gap’ in the multiscale framework, i.e. a scale for which neither appropriate models
nor data are available that adequately characterize the phenomena at that level. In order to
narrow this ‘gap,’ new techniques have to be developed that exploit principal properties of
the multiscale system.

Over the past decades, the lumping of neural networks, which would provide a basic
understanding on the influence of key features of individual neurons on the rhythms they
collectively produce, has proven to be a persistent challenge. In order to improve our basic
understanding of the generation of both physiological and pathological brain rhythms, it is
valuable to gain a better insight into these procedures.

In this thesis, I present an overview of the current efforts for obtaining such a reduction,
that is from spiking neurons to brain waves, primarily in relation to epileptic seizures. In
particular, I show how lumped models can be constructed qualitatively from the analysis of
highly complex network models, how existing procedures can be extended to incorporate
additional features of the underlying neurons, and how new results in dynamical systems’
theory are necessary to analyze particular models in full detail.

Models, networks, and noise

Networks of spiking neurons can be created which may incorporate many of the known
physiological aspects. These models accurately describe the interactions of a large collec-
tion of individual neurons connected with chemical or electrical synapses, henceforth they
are referred to as detailed models.

A natural questions arising for these models is how the neurons in the network synchro-
nize (at least partially) such that they exhibit the physiological rhythms that are observed in
both experimental and clinical settings. What are the dominant mechanisms in the system
responsible for the emergent behavior?

Given the fact that detailed models appear to be a natural approach to modeling tissue,
one should be wary for the conclusions drawn from them. First of all, models of this type,
since they capture a large part of the physiology, tend to rapidly grow in complexity as the
size of the network increases. Combined with the (typically) non-linear dynamics of the
individual neurons and the pulse-coupled nature of the connections, conventional types of
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analysis, such as dynamical systems’ theory, are often unsuitable to answer the previously
posed questions. Another impediment of detailed models is the fact that the many param-
eters of the system, particularly those relating to the connectivity, are only limitedly avail-
able from experiments. Although one can make an educated guess for these parameters,
the results of the model might be critically dependent on these values. Theoretically, this
could be resolved by a sensitivity analysis, but the number of parameters is often too large
and this type of analysis might not be feasible if evaluation of the model already demands
supercomputing, such as [114, 110, 86, 69]. Finally, because detailed models are predom-
inantly studied using simulations only, one can, in general, neither ascertain whether the
model has converged to its limiting attractor, nor exclude the presence of other attractors.
This impedes the possibility to draw conclusions at a global, or system-wide, scale.

Though it might seem that, given this summation of pitfalls, detailed modeling is not
particularly valuable for obtaining insights in the behavior of a spiking neuron network,
the contrary is true: rather than drawing far-reaching conclusions from these models, they
should be considered as an experimental setting instead, leading to in silico experiments.
Careful analysis of the large data sets, which often result from these simulations, could
assist in the identification of novel mechanisms underlying a particular feature. Ideally,
one would isolate and characterize this feature such that it assists in the formulation of
new hypotheses. This, in its turn, would stimulate the development of new models and
experiments to validate these premises.

A comment by Von Neumann, on the processing of information in networks, is the fol-
lowing “[...] without randomness, situations may arise where errors tend to be amplified
instead of canceled out” [126]. At a time when data from the nervous system were only
scarcely available, he already reasoned that the local redundancy of networks, due to a
disorderly organization, is required for a reliable functioning of the (brain) network. Al-
though the randomness might be necessary to ensure a reliable execution of a specific task,
performing a similar task will likely involve the same general mechanism. Following this
train of thought, one might conclude that, for capturing these basic features of the system,
a precise computation of all neurons in the network, i.e. the detailed modeling approach,
is not a necessity.

By making extensive assumptions on the neurons and their connections in the network,
the randomness can be averaged such that a smoothed, or lumped, model remains, which
describes the net behavior. Depending on the assumptions one makes, different reductions
can be made, but each typically revolves around the following quantities: mean membrane
potential [53, 80], average firing rate [97, 99], or fraction of active neurons [132, 133] in the
population. At a closer look, the majority of the lumping procdedures takes into account
two types of averaging. First, temporal averaging is used to smooth the spiketrain, a series
of discrete-time events, replacing it either with a firing rate, i.e. the rate at which action
potentials are generated, or with an effective synaptic current produced by the neuron.
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Secondly, the network connectivity is simplified, which occasionally takes into account
a spatial structure of some sort. Common assumptions made on the connectivity include
all-to-all and completely random.

Despite the fact that the compact formulation of lumped models qualifies them for a
thorough mathematical analysis, the results obtained from these models should be inter-
preted with care. Indeed, the averaging procedures, on which the reductions are based,
require many assumptions about the neurons and their connections, which might not all be
supported by physiology. Since not every parameter of the spiking neuron network has a
representative in the reduced model, or, vice versa, the lumping introduces new parameters
which often have no physiological meaning, it is, therefore, not trivial to translate results
obtained from lumped models back to biophysical properties of the neural network.

In addition, it is relevant to mention that understanding a single diseased state of the
brain does not only assist in unraveling the pathology at hand, it also provides principal
insights into the functioning of a healthy brain. Due to the multiscale nature of the system,
a complete comprehension of any disorder will essentially involve the majority of temporal
and spatial scales in the brain, rendering it almost as complex as the brain itself.

In this light, I believe that epileptic seizures provide a favorable testing ground for
studying both the effectiveness of lumping procedure and the conditions which might be
required. For that reason, I give an overview of the pathology related to epilepsy, together
with a motivation for modeling particular aspects of the malady.

Epilepsy, seizures, and synchrony

Epilepsy is a neurological disorder, characterized by an increased risk of recurring seizures,
which affects nearly 1% of world population. Seizures typically last for several seconds
up to a few minutes, although they can persist for days in exceptional cases. During ic-
tal events neural activity hypersynchronizes, thereby inducing an abnormally large elec-
tric field, which can be distinguished from regular activity by a variety of imaging tech-
niques, such as electroencephalography (EEG), electrocorticography (ECoG), and mag-
netoencephalography (MEG). A typical example of a seizure is depicted in Figure 1.1.

Considering seizures merely a symptom of epilepsy, the presence of this symptom can
be determined more or less objectively from these data, especially compared with other
disorders, whose symptoms are often dependent on behavioral examinations or psycho-
logical assessments. Although the seizures are objectively identifiable, reliable diagnosis
of epilepsy is often severely impeded by the low incidence of seizures, or other electro-
physiological markers related to the disease, such as interictal discharges. Indeed, due to
the episodic nature of the disease, it is considered a dynamic disease [90, 91].
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Fig. 1.1 EEG of a generalized seizure which is typical for absence epilepsy. At t = 7s, there is a sud-
den transition to abnormal bilateral synchronization, showing characteristic 3Hz spike-wave complexes.
Courtesy of Medisch Spectrum Twente.

Bearing in mind that the causes for epilepsy are numerous, ranging from conditions as
cortical deformations, traumatic brain injury and stroke, to subtle traits, like channel mu-
tations and genetic factors, suggests that epilepsy is a multiscale disease [43]. Often, it is
an interplay of many circumstances that results in epileptogenesis, i.e. the acquisition of
epilepsy, which has lead to the metaphor of a ‘river of epilepsy’ [78, 84]: small changes
‘upstream’ can result in devastating effects ‘downstream.’ As a matter of fact, the majority
of the factors involved in the disorder are likely to vary slowly over time and it is there-
fore important to stress the fact that a seizure model, e.g. a neural network that generates
seizures, is not the same as a model for epilepsy. The latter would particularly focus on
characterizing the evolution of the disease in terms of the slow factors, like pharmacore-
sistance and aging effects. Keeping in mind that the focus of this thesis is primarily on the
characterization of collective behavior in neural networks, I will particularly concentrate
on the generation of epileptiform activity within networks.

It is common practice to classify seizures by their clinical and behavioral manifes-
tations, leading to about 40 different types of epilepsy recognized by the International
League against Epilepsy (ILAE) [3, 44]. An intelligible distinction is made between par-
tial seizures, which prevail only in a part of the brain, and generalized seizures, in which
the whole brain is involved. Abnormal activity during a partial seizure has in some cases a
negative effect on connected brain areas, causing the seizure to expand in size by spreading
to these areas; eventually this can lead to a generalized seizure.

The prevalent cause for seizure generation is thought to be hyperexcitability of the net-
work, either caused by an excess of excitatory drive or due to lacking inhibitory control.
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Consequently, most anti-epileptic drugs (AED) focus on amending this imbalance by re-
ducing excitation or enhancing inhibition. It should therefore be no surprise that these
drugs may have a significant impact on both brain and body, such that side effects like
drowsiness, dizziness, and nausea are inevitable [55, 131]. Furthermore, it is not uncom-
mon for patients to have their seizures unadequately controlled by such medication. In-
deed, despite the introduction of many novel drugs, the fraction of patients whose con-
dition is not properly controlled with AEDs has remained near 30% for several decades
already [77].

It does not seem surprising that especially patients suffering from partial seizures are
less responsive to drugs. After all the medication can only be administered to the full brain
[35]. Lack of the ability to target the epileptic focus with AED has led to a seemingly
crude intervention: during so-called epilepsy resective surgery, the alleged epileptogenic
zone is surgically removed from the brain. Despite the fact that this type of surgery is quite
successful, it is only performed limited since the procedure is neither free of risk and nor
does every patient have a discernible focus [106].

Interest in focal partial seizures is twofold. Not only due to the fact that epileptic foci are
relatively small networks, making them more accesible for modeling than the whole brain,
also the availability of data is convincing: resective surgery for focal seizures often follows
after a long-term electrocorticogram which assists pinpointing the focus. Recordings ob-
tained from these invasively placed electrodes capture the neural activity at a much higher
spatial scale than a scalp EEG would and, furthermore, without interference of the skull.
These data are, since they constitute the mean electric potential of the underlying cortical
area, very well suited to be related to lumped models of the corresponding network.

For that reason, several detailed models have been put forward that study the epilepti-
form activity and spike-wave discharges in focal seizures. For instance, a model of neo-
cortex, which incorporates the layered anatomical organization, has been used to devise
a counterintuitive hypothesis that weak excitatory synapses could result in epileptiform
activity [115, 112]. Consequently, supportive evidence for this hypothesis has been ob-
tained from in vitro mouse experiments [113]. Another model suggests that especially the
electrical synapses, i.e. gap junctions, between axons are important for the generation of
high frequency oscillations (HFO) in conjunction with interictal discharges [42, 111, 93].
Development of epileptiform activity after (partial) isolation of cortical networks, as might
result from stroke or traumatic brain injury, is characterized in [109, 62, 8, 108] using in
vivo, in vitro and in silico models. Epileptogenesis, following upon slight network damage
in hippocampal networks, is modeled in [92] as caused by mossy fiber sprouting. This
might be a prevalent mechanism for mesial temporal lobe epilepsy.

Since even an epileptic brain functions almost flawlessly for 99% of the time, detailed
models would have to be simulated for prolonged durations to exclude the possibility of
generating epileptiform activity. Detailed models, for that reason, are also affected by the
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low incidence of insults, just as the diagnosis in patients. Hence, the above described stud-
ies often force the model into a regime where seizures are more likely to be observed. In
that respect, these in silico experiments are much like in vitro and in vivo experiments,
where conditions are often enhanced in favor of the pathology — for instance with phar-
macological interventions or electrical stimulation.

Due to their concise formulation, lumped models of neural networks often allow, by us-
ing results from dynamical systems’ theory, a more global analysis of the dynamics, such
that qualitative changes in the behavior can be characterized. This, combined with the fact
that the majority of the neurons behaves very similarly during epileptic insults, suggests
that lumped models are very suitable for modeling seizures. Indeed, long-standing work by
Lopes da Silva focuses on lumped models of the thalamocortical loops [82, 81]. Driven by
a noisy input, these models for absence epilepsy can switch from one attractor, correspond-
ing with regular background activity, to another, which is characterized by a spike-wave
complex. A comparable model, c.f. [99, 98], is subjected to a thorough bifurcation analysis
to identify the mechanisms underlying transitions of spike-waves to poly-spike complex
[100]. Furthermore, it has been shown that use of particular anesthetics could, in some
cases, also result in epileptiform activity [79].

The fact that some of these models are able to mimic clinical data accurately is, at least
in my opinion, rather surprising. It appears particularly ambiguous how these models cap-
ture, for instance, the properties of thalamocortical loop with the neocortex represented by
only two populations — one containing excitatory neurons, the other inhibitory — while
signals in the actual system pass through several layers of neocortex before projecting back
to thalamus. Furthermore, by condensing the entire structure, many of the intrinsic proper-
ties are lost, too. It is, for instance, unclear what the spatial arrangement of the synchrony
looks like, or how bilateral synchronous activity, as is common in generalized seizures,
can persist in the presence of delays. The latter effect, though, is often neglected since the
transmission delay of action potentials propagating through the myelinated axons in the
corpus callosum is commonly thought to be several milliseconds only. Small diameters
of the axons, however, might significantly increase the delays of particular fibers. Indeed,
it is suggested that 40–60% of the fibers in corpus callosum may introduce 100–200ms
conduction delay between the hemispheres [89, 91]. Naturally, these late pulses will have
some effect on the synchrony in the network.

The role of delays in brain networks appears to be underestimated. Indeed, analysis of
dynamical systems which incorporate time delays becomes more complicated, particularly
due to the fact that these system are infinite-dimensional. However, since delays seem to
have an impact on both synchrony and temporal pattern formation in the network, they
will play an important role in the work described in this thesis.
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Space, time, and delays

In the next chapter I discuss a qualitative reduction of a detailed model. Here, studying
simulation results of the detailed model of neocortex, originally proposed by Van Dron-
gelen and coworkers [115, 113, 112], reveals that pyramidal neurons in layers II/III and
V/VI have comparable firing patterns. Further analysis shows that the alternating activa-
tion of either population is primarily caused by the delays due to both action potential
propagation and synaptic activation. Essential features of this phenomenon are shown to
be well-captured by a two-node Hopfield network, with delayed, reciprocal connections.
The inhibitory processes in the network are mainly of a local nature, such that these can
be condensed into the excitatory nodes as an intrinsic property. Both simulations and nu-
merical bifurcation analysis in one parameter bring to light that the reduced model mimics
the qualitative behavioral transitions seen in the detailed model, albeit in a fairly simplistic
manner.

Thereafter, I focus on stability and bifurcations in a lumped model of neocortex,
where the previously proposed model is subjected to a thorough mathematical analysis.
Local dynamics near equilibria are determined by studying the characteristic equation and
bifurcations resulting in non-local behavior — such as limit cycles — are first classified
analytically and numerically investigated afterwards. The chapter concludes with the ob-
servation that the two-parameter bifurcation diagram of the lumped model shares essential
features with a brute-force exploration of the parameter space of the corresponding de-
tailed model [113].

Seeing that this reduction illustrates the fact that delays due to the laminar organization
are key for the generation of temporal patterns, it is natural to question how delays due
to the columnar organization affect pattern formation. Therefore, I concentrate on neural
fields with transmission delay next. Indeed, the laminar structure introduces only a lim-
ited number of delays in the lumped model, corresponding with the intra– and interlayer
connections, while the columnar arrangement gives rise to a distance-dependent form in
the delay. The spatiotemporal dynamics in such models have received considerable atten-
tion [80, 67, 65, 102, 123, 66, 64, 32, 30, 29], but analysis is often hampered by the lack
of a proper mathematical setting. In this chapter it is shown that neural field models with
transmission delay may be cast as abstract delay differential equations. Theory of dual
semigroups (also called sun-star calculus) provides a natural framework for the analysis
of such models, such that stability of equilibria and normal forms of bifurcations can be
determined. Consequently, spatiotemporal patterns anticipated by theory correspond with
numerical approximations of the system.

The availability of such a functional analytic setting for the analysis of neural fields
encourages the development of more advanced neural fields. Indeed, the majority of the
lumping procedures considers the neurons in the network as (leaky) integrators, such that
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a clear relation exists between the current arriving at the soma and the corresponding firing
rate. Although some models incorporate an additional state variable, which results in spike
frequency adaptation (SFA), more advanced spiking behaviors, like bursting and rebound
spikes/bursts, are still considered unsuitable for lumping. Since these types of spiking are,
in certain phenomena, considered to be relevant for the synchrony, the last chapter studies
spatially extended neurons as extension to neural fields. In other words, an extension to
the general framework is proposed which facilitates the inclusion of more complex spiking
patterns. Effectively simplifying the fast spiking dynamics of a single neuron yields a firing
rate model which is easily extended across space. Results are consistent with traditional
reductions based on integrate-and-fire neurons, both with and without spike frequency
adaptation, but the main outcome is the formulation of a neural field based on Izhikevich
neurons [68]. Although a clear correspondence is shown between the original spiking neu-
ron network and the neural field, the reduction still needs refinements, both on the level of
modeling as well as the mathematical analysis.

In spite of the fact that the role of epileptic seizures appears diminished in some of the
chapters, the focus will nonetheless be on emergent behavior of networks and dynamical
transitions between different states. Hence, a clear application of these results with respect
to epilepsy is within reach.





Chapter 2
A qualitative reduction of a detailed model

Abstract Two models of the neocortex are developed to study normal and pathological
neuronal activity. One model contains a detailed description of a neocortical microcolumn
represented by 656 neurons, including superficial and deep pyramidal cells, four types
of inhibitory neurons and realistic synaptic contacts. Simulations show that neurons of a
given type exhibit similar behavior in this detailed model. This observation is captured
by a population model which describes the activity of large neuronal populations with
two differential equations with two delays. Both models appear to have similar sensitivity
to variations of total network excitation. Analysis of the population model reveals the
presence of multistability, which was also observed in various simulations of the detailed
model1.

2.1 Introduction

Epilepsy is a neurological disease, characterized by an increased risk of recurring seizures,
that affects nearly 1% of the world population. This disease can be controlled pharmaco-
logically in about 75% of the cases, although a multidrug regimen, with all the side ef-
fects resulting from drug-drug interactions, is often required to adequately control these
patients. The remaining 25% of patients has a intractable epilepsy which cannot be con-
trolled adequately with drug treatment [87]. Despite the introduction of many novel drugs
throughout the last decades the prevalence of intractable epilepsy has not decreased. One
possible explanation for this observation is that the existing anti-epileptic drugs (AED)
target only a few specific mechanisms of epileptogenesis, whereas other etymologies, yet
unidentified, may require different treatment.

1 Adapted from S Visser, HGE Meijer, HC Lee, W van Drongelen, MJAM van Putten and SA van Gils,
Comparing epileptiform behavior of mesoscale detailed models and population models of neocortex, Jour-
nal of Clinical Neurophysiology 27 (2010), no. 6.

11
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As most patients with epilepsy remain seizure free most of the time, it can be time
consuming to collect enough pathological data for analysis. This is partially due to the
limitations in spatial and temporal resolution of recording equipment. For instance, scalp
EEG mainly displays collective phenomena of cortical dynamics with a very limited sen-
sitivity for subcortical circuits that are presumably relevant in certain types of epilepsies
(e.g. absence epilepsy).

Modeling may improve our understanding of epileptogenesis and provide clues for
novel treatments. Such models exist at many levels of abstraction, ranging from describ-
ing the brain as a black box with a certain input/output relation to a detailed description
of the individual neurons in the brain. In order to reveal new mechanisms behind seizures
any useful model should have a sufficient connection with physiology to relate observed
(neurological) behavior to the pathological condition of the patient.

A straightforward approach to model neuronal activity in the brain is to model indi-
vidual neurons in the brain and their mutual interactions. We refer to models of this type
as detailed models. As individual cells and connections can be modeled with various lev-
els of complexity, different types of detailed models exist. Several detailed model have
been proposed of the complete brain [86, 69], but these do not focus on pathological
behavior. Detailed models of the brain primarily intended to study epileptiform activ-
ity have been developed as well, but these consider only a limited number of neurons
[115, 113, 112, 110]. This limitation, however, does not preclude the possibility of for-
mulating important, testable hypotheses. For instance, predictions regarding epileptiform
activity have been made with a detailed model that were subsequently confirmed in vitro
[113].

Because these detailed models are substantial in both size and complexity, analyzing
their behavior is a hazardous task. For that reason we are interested in studying a more
abstract class of models which gives a more concise description of neuronal activity than
detailed models, so-called population models. Rather than describing properties of individ-
ual neurons, these models describe the dynamics of population-averaged quantities, such
as the mean membrane potential of all neurons in the populations, the mean firing rate or
the fraction of active neurons within the population.

Most population models are based on the original work done by Wilson and Cowan
[132] who derived a model for two generic interconnected populations; one population
containing only excitatory and the other only inhibitory neurons. Potential mechanisms
for transitions between normal and epileptic activity have been studied with population
models in absence epilepsy [81, 13, 100] and mesial temporal lobe epilepsy [130].

A fundamental problem of population models, however, is that they are based on aver-
aging procedures that cannot be justified rigorously. For that reason it is difficult to relate
parameters of population models to physiological properties of the neurons within the pop-
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ulations. One should therefore be cautious during analysis of the model and continuously
investigate the physiological relevance of the parameters considered.

We do not favor one modeling approach over the other, since we believe that both
types of models should be analyzed simultaneously in order to study new mechanisms for
seizure onsets. In our opinion, hypotheses should be formulated through bifurcation anal-
ysis of simpler population models and then subsequently tested in a detailed model. This
step, which to our knowledge is rarely performed, is crucial because it gives the lumped
parameters of the population model a relevance and clinical significance by mapping them
onto a set of physiological parameters in a detailed model. Similarity between both models
should ideally be determined by quantitative measures.

We present two models of the neocortex, one detailed model and the other based on the
population approach. We consider changes of parameters and show that both models have
similar sensitivity to these parameters.

2.2 Methods

Areas of the neocortex make numerous connections with each other and with deeper sub-
cortical brain regions such as the thalamus. These regions of neocortex are organized into
a collection of macrocolumns that each perform an elementary task [23]. These macro-
columns can then be split into mesocolumns, that are in turn split into microcolumns within
which the activity of neurons is strongly correlated. Such a microcolumn contains roughly
1,000 neurons and covers an area of about 10,000 µm2 of the neocortex. The local struc-
ture of a microcolumn consists of several layers that are tightly connected with each other.
Since these local connections are better characterized than long-range connections to ei-
ther the thalamus or other neocortical columns, we only focus on modeling a small area of
the neocortex without long-range interactions.

Two modelling approaches are used; the first being a detailed neuron model analyzed
at a meso-scale of 656 neurons and the other a simpler two-population model.

2.2.1 Detailed model

2.2.1.1 Description

A small patch of the neocortex is modeled by connecting detailed models of individual
neurons with artificial synapses, similar to [115, 113, 112]. We summarize this model and
its underlying assumptions below, together with an overview of the modifications made.
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The model describes the activity of pyramidal neurons in layers 2/3 and 5 of the neocor-
tex, referred to as superficial cells and deep cells respectively, and four types of inhibitory
interneurons: three types of basket cells (each of a different size) and chandelier cells. All
neurons are discretized into several compartments that describe the physiological structure
of a cell with a soma and a dendritic tree. The interneurons consist, due to their limited
size, of two compartments, whereas the superficial and deep pyramidal cells are described
by 5 and 7 compartments respectively. Cells are placed randomly in a three dimensional
space, complying with the following depth ranges for each cell type. The depth of the
superficial pyramidal cells varies between 250µm and 750µm whereas the deep pyrami-
dal cells’ depths vary between 1000µm and 1500µm and the depth of the interneurons is
between 250µm and 1500µm. The minimal separation between two cells is 2µm.

Voltage-gated sodium and potassium channels are taken from [12] and maximal con-
ductances for ion channels are copied from [112]. Superficial pyramidal cells contain per-
sistent sodium channels which cause the cells to burst intrinsically.

Action potentials are assumed to have a constant conduction velocity of 0.08m/s
through axons, inducing a time lag for synaptic transmission proportional to the distance
between cells. After arrival of an action potential an exponentially decaying postsynaptic
current is generated that has two time constants [12, chap. 6].

Connections of neurons are randomly determined in a way such that the connection
probability depends on the cell types (both sending and receiving neurons) as well as
the distance between the cells. Both types of pyramidal neurons can connect to all neu-
rons within a certain range. Basket cells will only inhibit pyramidal cells and other basket
cells. Chandelier cells make inhibitory connections to somas of pyramidal cells exclu-
sively, close to the location where the axon sprouts from the soma. The model contains
neither gap junctions nor long-range connections to other columns.

2.2.1.2 Meso-scale implementation

A realization of this model with 656 neurons (2x 256 pyramidal cells and 4x 36 interneu-
rons) is implemented in C++, making it a meso-scale simulation. We randomly generate
one network, consisting of 43124 connections, and we only consider simulations with this
specific network topology.

Next, an interface is developed that converts the neuronal activity of the network to a
local field potential (LFP), representing a small electrode placed on or nearby the network,
e.g. an electrocorticogram (ECoG) electrode. The algorithm is based on the method of
“sinks and sources” as described in [95], except that only the superficial pyramidal neu-
rons are considered rather than all neurons, because these large cells are closest to the
electrode. Therefore they will have the largest contribution to the EEG compared to the
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smaller interneurons and the deep cells that lie farther away. The obtained signal is unfil-
tered and should be interpreted as a DC recording.

2.2.2 Population model

2.2.2.1 Description

The activity of a neuron in a microcolumn is strongly correlated with the activity of nearby
neurons due to tight connectivity and synchronization. It is therefore a natural step to con-
sider the average activity of a large group of neurons rather than the behavior of individual
neurons.

Here, a microcolumn of the neocortex is modeled using two populations, representing
the average activity of the superficial and the deep pyramidal cells, respectively. First, it is
assumed that neither of the populations can exhibit self-sustained activity in the absence of
activity of the other population, hence the activity of the populations is modeled to decay
exponentially over time. Next, when the activity of a layer increases, more action poten-
tials are sent to neurons in the other layer where excitatory synapses are activated after
some time lag. This increases the activity in that layer. Rather than modeling a population
of inhibitory interneurons, we model the inhibition caused by pyramidal cells that excite
interneurons that, in turn inhibit the pyramidal cells (see also figure 2.1).

E

E

x1

x2

I

I

Fig. 2.1 Schematic overview of the population model: two connected excitatory (E) populations are con-
sidered as well as the feedback of the inhibitory (I) populations that is modeled as an intrinsic property.

The above described model leads to the following set of delayed differential equations
(DDEs):

dx1

dt
=�µ1x1(t)�F1(x1(t � ti))+G1(x2(t � te)),

dx2

dt
=�µ2x2(t)�F2(x2(t � ti))+G2(x1(t � te)),

(2.1)
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with x1 and x2 the activity of the neuronal populations of superficial and deep pyrami-
dal cells respectively. The constants µ1 and µ2 represent the intrinsic rate of exponential
decay of neuronal activity within a population. The functions Fi(x) and Gi(x) are both
sigmoidal functions that determine the activation of the inhibitory and excitatory synapses
respectively. The delay te is the time needed for action potentials to travel from one layer
to another, whereas ti is the time lag for the inhibitory feedback loop. Both delays include
the extra time lag caused by activation of the synapses.

The two-population network given in equation (2.1) is an example of a graded Hopfield
network with delays. Several of these networks have been analyzed in [9, 103], but their
analysis focused mainly on studying steady states rather than (periodic) oscillations.

To simplify the model and decrease the number of parameters, we analyze the symmet-
ric system:

µ1 = µ2 := µ, F1(x) = F2(x) := F (x), G1(x) = G2(x) := G (x). (2.2)

The following expressions are chosen for the synaptic activation functions:

F (x) = ai (tanh(six�1)+ tanh(1))cosh2(1),

G (x) = ae (tanh(sex�1)+ tanh(1))cosh2(1),
(2.3)

with ai and ae the strengths of the inhibitory and excitatory connections and si and se the
rates at which their synapses saturate. For negative values of x both F (x) and G (x) are
negative; representing a suppression of the synaptic background activity.

We choose the following values for the parameters: µ = 3, ti = 4, te = 7, ai = 0.2,
ae = 1.5, si = 2 and se = 1.2. The delays are chosen similar to the delays in the detailed
model. Because the number of excitatory synapses in the detailed model outnumbers the
inhibitory, ae is chosen larger than ai. For the same reason, we choose si > se because
the inhibitory synapses will saturate faster due to their low number.

2.2.3 Simulating epilepsy

2.2.3.1 Decreased excitation

As shown in [113], the neocortex can exhibit epileptiform activity when excitatory synapses
in the network are weakened. Because this opposes most expectations, we try to reproduce
the results of this experiment with both models. In the detailed meso-scale model, the
global levels of excitation can be modified by adding or removing excitatory synapses.

Modifying the levels of excitation in the population model can be achieved in several
ways. The parameter ae represents the excitation between layers and is therefore a proper



2.3 Results 17

0 0.5 1 1.5 2ï�

ï�

ï�

ï�

0

2 x 10ï�

Time (s)

Lo
ca

l f
ie

ld
 p

ot
en

tia
l (

a.
u.

)

100 200 300 400 500 600
0

20

40

60

80

100

120

140

Cell ID

M
e
a
n

 f
ir

in
g

 r
a
te

 (
H

z
)

SPyr DPyr Ch1 2 3

Bask

Fig. 2.2 Simulation of meso-scale detailed model for high excitation. The LFP in the left panel shows
desynchronized activity. The right panel depicts mean firing rate of individual neurons (see text).
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Fig. 2.3 Simulation of meso-scale detailed model for moderate excitation. The LFP shows irregular
bursting, especially at 0.5s.

candidate parameter. On the other hand, the parameter µ determines the rate at which the
activity within a layer decreases. If the network contains more excitatory synapses, more
connections are made within the population and the activity will therefore decrease at a
lower rate. We have chosen to vary the parameter µ to modify the levels of excitation
because we assume that more intralayer connections exist than interlayer connections.
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Fig. 2.4 Simulation of meso-scale detailed model for low excitation. The LFP shows oscillatory activity.
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Fig. 2.5 Simulation of meso-scale detailed model for very low excitation. The LFP shows regular burst-
ing.

2.3 Results

2.3.1 Meso-scale detailed model

2.3.1.1 Validation

The meso-scale detailed model is evaluated for different levels of excitation, beginning at
a high value of excitation and then decreasing excitation below the normal level.

For high levels of excitation the network exhibits saturated, desynchronized activity in
which all neurons fire action potentials at a high frequency with a very low correlation
(figure 2.2). When the network excitation is set to normal physiological values, the mi-
crocolumn’s behavior shows irregular bursts (figure 2.3). For low values of excitation, we
observe fast oscillations in the EEG of 50Hz (figure 2.4). A closer analysis of these oscil-
lations reveals that the populations of superficial and deep pyramidal cells are alternately
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active. After reducing the excitation to exceptionally low levels, one fifth of the normal
level, the oscillations cease and the network reaches a state of burst-suppression behav-
ior. These network bursts are initiated by the intrinsically bursting superficial pyramidal
neurons, which synchronize easily but fail to initiate activity in other layers due to the
low level of excitation. Hence the network remains silent apart from these short bursts of
activity.

Oscillating and regular bursting behavior, typical epileptiform activity, are only ob-
served in networks with weak excitatory synapses. Contrarily, desynchronized activity and
irregular bursting on the other hand, are exclusively seen in simulations with high levels
of excitation. These results are in correspondence with the findings of [113].

2.3.1.2 Activity of populations

Next we study the activity of individual neurons during simulations of the different types of
network behavior. For each neuron in the network the mean firing rate of action potentials
is determined by dividing of the total number of action potentials of a neuron by the total
simulation time. The results are shown in the right panels of the figures 2.2 to 2.5, in which
the mean firing rate is depicted for all neurons. The first group of 256 neurons represents
the activity of the superficial pyramidal neurons, whereas the second group depicts the
activity of the deep cells. The four other groups contain interneurons of different types:
the first three columns contain basket cells of increasing size and the latter column holds
the chandelier cells.

As a first observation we note that the variation of the mean firing rate of individual
neurons is small for neurons within a population. For example, note the result for low
excitation (figure 2.4) in which the firing rate of many neurons is identical to that of others.
Furthermore, both the type 2 basket cells and the chandelier cells have similar firing rates
as well as the superficial pyramidal cells and type 3 basket cells.

Generally we observe that the activity of most neurons decreases gradually as the lev-
els of excitation are reduced, except for the deep pyramidal cells whose activity drops
suddenly for normal levels of excitation and recovers again for lower levels. As the levels
of excitation are high, the small basket cells (type 1) experience an excitation block, indi-
cating that the excitatory synapses remain continuously activated due to the absence of a
rhythm. Hence, the neuronal activity is desynchronized.

By counting the number of action potentials nAP,i, j of population i in time bin j, we
define the instant firing rate fi, j of neurons within population i as follows:

fi, j =
nAP,i, j

NiTj
, (2.4)
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Fig. 2.6 Instant firing rate of both excitatory populations is plotted during simulations with (left) high,
(center) low and (right) very low excitation. Note the desynchronized activity in the left and the alternating
activity in the center panel.

with Ni the number of neurons in population i and Tj the size of time bin j. Figure 2.6
shows the instantaneous firing rate of the pyramidal neurons for several levels of excitation
in the network. The desynchronized activity is now clearly visible as is the alternating
activity during the oscillations.

2.3.2 Population model

These results, indicating that neurons of a given type in the detailed model have very
similar behavior in the detailed model, encourage us to study a population model that
describes the activity of these clusters rather than the individual neurons.

2.3.2.1 Analysis of bifurcations

To understand the dynamics available to the population model, we perform a bifurcation
analysis. Figure 2.7 shows a caricature of the bifurcation diagram of the population model
for varying decay rate µ of the population’s activity. Every curve in the diagram represents
a specific type of limiting behavior of the model: either a fixed point or a limit cycle. Fixed
points are depicted with a thin line of which the vertical component is the population’s
activity at that fixed point. Limit cycles are indicated with a thick line that corresponds
with the maximal activity reached by a population during a period. Solid lines are used to
mark stable limiting behavior, meaning that it will force nearby orbits to exhibit similar
behavior as the limiting behavior itself, whereas dashed lines designate unstable types of
behavior that will repel nearby orbits.

Because the origin is always a fixed point of the system (2.1), we choose this point as
initial point for our analysis. For high values of µ the origin is a stable fixed point of the
system. When decreasing the parameter µ , the origin retains its stability until the critical
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Fig. 2.7 Bifurcation diagram of the population model, representing possible solutions of the system.
Curves represent steady states (thin lines) and periodic orbits (thick lines). Solid lines indicate stable
solutions and dashed lines correspond to unstable solutions. See text for a description of the curves and
bifurcation points a-l.

point (a) is crossed at which it undergoes a subcritical Andronov-Hopf bifurcation and a
family of (unstable) limit cycles arises. Continuation of the unstable equilibrium yields a
branch point at (b) where it coincides with a another unstable equilibrium. Analyzing the
evolution of this new equilibrium reveals a fold bifurcation and two successive subcritical
Hopf bifurcations at (c) and (d) after which it becomes stable.

Closer inspection of the limit cycles that appeared at (a) yields a family of symmetric
oscillations representing synchronous neuronal activity. This branch passes a Neimark-
Sacker bifurcation at (e) and a supercritical period-doubling bifurcation at (f) where it
spawns a branch of asymmetric periodic solutions with its period initially doubled. The
symmetric branch folds over and undergoes another period-doubling bifurcation at (g)
where it becomes stable until it undergoes another period-doubling at (h). Beyond (h) the
branch folds over, experiences another period-doubling bifurcation at (i) until it terminates
in the Hopf bifurcation (c).

Following the branch of asymmetric solutions that emerges at (f), we find that it folds
twice to gain stability at (j). At the left end of the diagram, stability is lost in another fold
bifurcation (k) and the branch eventually terminates at the Hopf bifurcation (d).

Next we continue the branch of limit cycles spawned at the period-doubling bifurcation
(h), at which the populations exhibit synchronous activity at half the original frequency.
The branch is stable at first but loses stability in (l) due to three successive fold bifurcations
after which it ends in the period-doubling at (i).

We summarize the results of this bifurcation analysis. The population model can, in
principle, display all the basic types of behavior previously seen from the detailed model
(c.f. 3.1.1). For large values of µ larger than (j), the origin is the only stable solution of the
system, indicating that all activity eventually dies out. If µ is smaller than (a), only one
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Fig. 2.8 Simulation results for the population model for different levels of excitation. The excitation is
changed in each of the panels (left) µ = 2, (center) µ = 3 and (right) µ = 4.

stable equilibrium is present at a high level of activity at which both populations remain
continuously activate. Either of these steady states is symmetric in the sense that both
populations exhibit identical behavior. Asymmetric steady states, in which one population
is continuously active and the other quiescent, are not present.

If the value of µ lies between (j) and (k), the network can generate periodic behavior
where both neuronal populations are alternately activated. Whenever µ takes values be-
tween (l) and (d), the system has four stable solutions: two equilibria and two types of
oscillations.

2.3.2.2 Behavior

Simulations are performed for the population model given in (2.1) for different values
of µ to study the effects of altering excitation. For high levels of excitation (µ = 2), the
simplified model reaches a steady state at with high level constant activity (left panel of
2.8). At moderate levels of excitation (µ = 3), the model manifests oscillations in which
both populations are antiphasically active (middle panel). For very low levels of excitation
(µ = 4), all activity dies out and both populations become quiescent (right panel).

2.3.3 Comparison

2.3.3.1 Behavior

After analyzing both the detailed model and the population model individually, we com-
pare their results in this section.

We note that the desynchronized behavior observed in the detailed model is similar
to the high steady state in the population model, because the detailed model reveals that
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individual neurons in the excitatory populations are continuously active without a distinct
rhythm. Both models exhibit this type of behavior for high levels of excitation.

For normal levels of excitation, the detailed model displays irregular bursts of activity,
in which the superficial pyramidal cells are clearly more active than the deep cells (figure
2.3). This type of behavior, in which one population clearly dominates the other, can never
be observed in the population model as no asymmetric steady states are found in the bifur-
cation analysis. In future work, we will break the symmetry of the population model and
include specific properties of the excitatory neurons, such that asymmetric steady states,
corresponding with the observed behavior, are likely to exist. Even though the population
model is unable to exhibit this type of behavior, we question the relevance of this result of
the detailed model because of the unnatural dominance of the superficial population.

When the excitation in the network is low, the network shows oscillatory behavior in
which neurons in the pyramidal populations are alternately active (figure 2.6). This corre-
sponds extremely well with the family of asymmetric limit cycles observed in the popula-
tion model (figure 2.8 center).

For very low values of excitation in the population model, we find that activity of both
populations dies out eventually (figure 2.8 right). This behavior matches closely with the
burst-suppression of the detailed model, that is observed at very low levels of excitation,
because it is quiescent for most of the time. We recall that the regular bursts occur on a
long time scale (close to 1 second) and that the population does not contain such long time
scales. Furthermore, the bursts of activity are initiated by the superficial pyramidal cells
that burst intrinsically. Since spontaneous activity is not included in the population model,
we do consider these behaviors similar.

2.3.3.2 Multistability and bifurcations

Bifurcation analysis of the population model reveals the presence of multistability of at
most four attractors. These attractors and their stability are well-defined in the population
model, but undetermined in the detailed model. For instance, if the detailed model is close
to a bifurcation point, it can repeatedly switch from one type of behavior to another (see
figure 2.9). This type of behavior, in which both states appear intermittently, is caused
by the chaotic nature of the detailed model. The population model does not capture this
intermittent behavior, but it describes the attractors to which switches can be made.

Moreover in the detailed model, we have found evidence for the occurrence of period-
doubling bifurcations and the existence of multistability for synchronous and asynchronous
neuronal activity.

Finally, two simulations were also performed in which the conduction velocity of action
potentials through axons varied slowly over time (figure 2.10). As the conduction velocity
slowly increases (fig 2.10, left) the frequency of the oscillations seems to double at t ⇡
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Fig. 2.9 Compare with figures 2.4 and 2.5. For values of excitation between low and very low, the model’s
behavior switches between oscillations and regular bursts.
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Fig. 2.10 A period doubling bifurcation under the effect of hysteresis. (left) the conduction velocity of
action potentials increases slowly from 0.08m/s to 0.088m/s due to which the system undergoes a period
doubling bifurcation. (right) the conduction velocity in decreased continuously from 0.088m/s to 0.08m/s
and the fast oscillations persist.

0.6s. If the conduction velocity is slowly returned to its original value (fig 2.10, right) then
these fast oscillations persist. This confirms the multistability predicted by the bifurcation
analysis of the population model, in which we found both symmetric and asymmetric
stable limit cycles for a wide range of values for µ .

2.4 Discussion

In this work we studied two models of the neocortex to examine neuronal activity during
epileptiform network behavior. The first model is based on a detailed description of 656
neurons, consisting of two types of pyramidal cells and four types of interneurons. For
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validation we compared this model to [113], because the network shows similar types of
behavior (i.e. desynchronized, irregular bursting, oscillatory and regular bursting) when
the network excitation is changed. The second model is a population model, consisting of
two delay differential equations, that represents the activity of pyramidal neurons in both
superficial and deep layers of the neocortex. Analysis of this model reveals comparable be-
havior as the detailed model for corresponding changes of excitation levels in the network.
Determination of the bifurcation diagram of the population model yields an understanding
of the more exotic types of behavior observed in the detailed model, like multistability,
intermittency and period doublings (figures 2.9 and 2.10).

The fact that these two models exhibit similar behavior reveals, in our opinion, a new
way to analyze transitions of neuronal activity in the brain. First, bifurcations of an associ-
ated population model with lumped parameters can be studied, from which new hypotheses
can be formulated regarding emergent epileptiform network behavior. Next, values of the
lumped parameters of the population model should be translated into physiological param-
eters in the detailed model to gain physiological insight intro the role these parameters play
in inducing epileptiform behavior in the detailed model. This would allow for hypotheses
generated from the population model to be verified in a model, which incorporates details
of single neurons, which is important since drug therapies have their targets at subcellular
level ultimately.

Whereas several hypotheses have been formed using population models [81, 100], none
of these have been further confirmed in a detailed model. This impedes any attempt to put
these results into a physiological and clinical relevant perspective

We are aware of the limitations of both of our models (for instance omitting the thala-
mocortical feedback loop by only considering neocortical structures) and we present this
work merely as an starting point for future work. Both models can be expanded by includ-
ing thalamocortical connections enabling us to study other types of epilepsy can be studied
as well, instead of only neocortical epilepsy. The proposed population model is not fully
examined for the presence of bifurcations with respect to parameters other than the level of
excitation µ and we expect further study to reveal new predictions for mechanisms behind
the generation of epileptiform activity.





Chapter 3
On stability and bifurcations in a lumped model of
neocortex

Abstract A lumped model of neural activity in neocortex is studied to identify regions of
multi-stability of both steady states and periodic solutions. Presence of both steady states
and periodic solutions is considered to correspond with epileptogenesis. The model, which
consists of two delay differential equations with two fixed time lags, is mainly studied
for its dependency on varying connection strength between populations. Equilibria are
identified, and using linear stability analysis, all transitions are determined under which
both trivial and non-trivial fixed points lose stability. Periodic solutions arising at some of
these bifurcations are numerically studied with a two-parameter bifurcation analysis1.

3.1 Introduction

Epilepsy is a neurological disease characterized by an increased risk of recurring seizures
that affects about 1% of the world population. Such seizures typically manifest themselves
as brief periods in which neural activity is more synchronized than a certain baseline level.
In lumped models of neural activity in the brain, these seizures are, for that reason, often
characterized as large-amplitude oscillations [84]. Many causes might exist for the neural
network to start oscillating, e.g., a slow parameter or an external factor might cause a
bifurcation [130], or a perturbation might force the system to a different attractor [81].

In this paper, we study the attractors and their bifurcations in a lumped model of super-
ficial and deep pyramidal cells in neocortex that has been shown to correspond well with
a large detailed model whose results conformed to experiments [113, 125]. The structure
of this model is shown in Figure 3.1. Our main goal is to identify the dominating stable
attractors in the system as well as their bifurcations for varying connection strength of the

1 Adapted from S Visser, HGE Meijer, MJAM van Putten and SA van Gils, Analysis of stability and
bifurcations of fixed points and periodic solutions of a lumped model of neocortex with two delays, Journal
of Mathematical Neuroscience 2 (2012), no. 8.

27
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neural populations. The model proposed in [125] is essentially a continuous time two-node
Hopfield network with discrete time delays and feedback that is governed by the following
equations:

dx1

dt
(t) =�µ1x1(t)�F1(x1(t � ti))+G1(x2(t � te))

dx2

dt
(t) =�µ2x2(t)�F2(x2(t � ti))+G2(x1(t � te))

(3.1)

E

E

x1

x2

I

I

Fig. 3.1 Overview of the model. Two cortical layers (red and blue) with excitatory pyramidal cells are
connected mutually. The inhibition of the interneurons (green) is modeled intrinsically.

where xi is the node’s activity, µi the natural decay rate of activity, ti the time lag
of feedback inhibition, te the delay of feedforward excitation and both Fi(x) and Gi(x)
are bounded monotonically increasing functions that represent inhibitory and excitatory
synaptic activation, respectively.

Small Hopfield networks of this and similar forms have been studied in detail by var-
ious researches [7, 9, 19, 21, 20, 22, 49, 59, 58, 63, 96, 103, 127, 128, 134, 137, 136] .
For example, Olien and Bélair [96] studied a two-node network with both delayed feed-
forward and delayed feedback connections between the nodes. Later, the same model was
analyzed further by Wuan and Rei [127]. The delays in this model, however, are node-
specific (the delays for all outgoing connections of a node are unique for that node) instead
of connection-specific (the delays are unique for each type of connection: excitatory and
inhibitory). The latter case applies to our network.

We particularly notice the work by Shayer and Campbell [103] that studies a model
very similar to the system (3.1) except for the fact that they choose the activation functions
as odd functions. Although they numerically identify multi-stability of steady states and
a periodic solution, their study mainly focuses on analytical determination of the stability
and bifurcations of the trivial equilibrium in terms of the time lag parameters. In 2005,
Campbell et al. studied the numerical continuation of periodic solutions in a ring of neu-
rons [21]. We will extend a similar approach to a two-parameter bifurcation study in this
work.



3.1 Introduction 29

Because Hopfield networks originate from computer science to solve mathematical pro-
gramming problems [129], it is more common to study models of the Wilson-Cowan type
for physiological modeling [132]. On that note, we like to point to a study by Coombes
and Laing of a Wilson-Cowan type model, which is very similar to our model, in which
they observe a variety of steady states, periodic solutions and chaos [30]. While Hopfield
models are uncommon in mathematical neuroscience, we are not the first to study these
models with a physiological relevance. For instance, Song et al. studied two clusters, each
consisting of an excitatory and an inhibitory node that projected onto each other with de-
layed connections [105]. They assumed that the connections between the nodes could be
faster in one direction than in the other, and they studied the model’s dependency on this
difference in time lags. Furthermore, they are, to our knowledge, the only group that has
performed a numerical bifurcation study of periodic orbits in two parameters for this type
of model.

Due to the physiological background of our model, the delays are known and we con-
sider fixed values of ti and te. Because of that, we are primarily interested in the param-
eters related to connection strength as these may be amended with anti-epileptic drugs.
Although these results will depend on the chosen values of the delays, we elaborate on
their robustness under variations of these delays in the discussion.

Another difference with the pioneering works [9, 103] is related to symmetry in the
model. They have chosen their functions Fi and Gi as odd functions, which introduces a
reflectional symmetry. For physiological reasons, the model considered in this paper uses
non-symmetric activation functions for the synapses because the activation of synapses is
thought to be stronger than the deactivation. In order to reduce the number of parameters,
we choose the following:

µ1 = µ2 := µ, F1(x) = F2(x) := F (x), G1(x) = G2(x) := G (x).

This choice of parameters and activation functions makes the model Z2-symmetric. The
following expressions are chosen for the synaptic activation functions

F (x) = aiS(six), G (x) = aeS(sex) (3.2)

for certain S that is smooth, strictly increasing and satisfies S(0) = 0 and S0(0) = 1. Typi-
cally, S(x) is bounded and sigmoidal, i.e., S has exactly one inflection point. The results in
section 2 are independent of the specific shape of S, but we will specify S for the numerical
bifurcation analysis.

In the remaining part of this article, we study the non-dimensionalized version of (3.1)
by taking x̃i(t̃) := xi(µ t̃):
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dx̃1

dt̃
(t̃) =�x̃1(t̃)�a1S(b1x̃1(t̃ � t1))+a2S(b2x̃2(t̃ � t2)),

dx̃2

dt̃
(t̃) =�x̃2(t̃)�a1S(b1x̃2(t̃ � t1))+a2S(b2x̃1(t̃ � t2)),

(3.3)

with a1 := ai
µ

, b1 := si, a2 := ae
µ

, b2 := se, t1 := µti and t2 := µte. For convenience, we
drop the tildes from now on and switch to vector notation:

ẋ(t) = f(xt), with xt 2C([�h,0],R2) and h = max(t1,t2). (3.4)

In the following section, we will study this system analytically by determining its fixed
points and the linear stability of these points. We will identify a stability region in parame-
ter space and classify the bifurcations on the edge of this region. For Hopf bifurcations of
the trivial steady state, we compute the first Lyapunov coefficient to study the criticality of
these bifurcations. In the ‘Numerical bifurcation analysis’ section, we use software pack-
ages to determine (numerically) how the presence and stability of the bifurcating periodic
solutions depend on the parameters a1 and a2.

3.2 Equilibria: linear stability and bifurcations

In this section, we study the equilibria as well as their linear stability. Necessary condi-
tions for saddle-node, trans-critical and Hopf bifurcations are derived. Thereafter, the first
Lyapunov coefficient is evaluated for the Hopf bifurcations to determine their criticality.

3.2.1 Equilibria and stability region

First we note, since S(0) = 0, that the origin (x1,x2) = (0,0) is always a fixed point of the
system (3.4). For the non-trivial fixed points, the following holds:

Theorem 3.1. The system (3.4) admits exclusively symmetric fixed points:

f(x⇤) = 0 =) x⇤ = (x⇤,x⇤) for some x⇤ 2 R.

Proof. First we note that, since S(x) is a continuous strictly increasing function, its inverse
function S�1(x) exists, and it is also continuous and strictly increasing. Next define:

H(x) :=
1
b2

S�1
✓

1
a2

(x+a1S(b1x))
◆

.
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Because of monotonicity of both S and S�1 and positiveness of all parameters, H is con-
tinuous and strictly increasing as well.

Fixed points of (3.4) satisfy f(x⇤) = 0 which is equivalent to:
8

<

:

x⇤2 = H(x⇤1),

x⇤1 = H(x⇤2).
(3.5)

Assume that the equilibrium is asymmetric and that x⇤1 < x⇤2 without loss of generality.
Application of H on both sides of this inequality and use of the conditions in (3.5) yield:

x⇤2 = H(x⇤1)< H(x⇤2) = x⇤1.

This contradicts our assumption; hence, we conclude that x⇤1 = x⇤2 = x⇤.

Due to the symmetric positions of these fixed points, the linearization u(t) at these
equilibria takes the following form:

u̇1(t) =�u1(t)� k1u1(t � t1)+ k2u2(t � t2),

u̇2(t) =�u2(t)� k1u2(t � t1)+ k2u1(t � t2),
(3.6)

with
k1 := a1b1S0(b1x⇤) k2 := a2b2S0(b2x⇤). (3.7)

Both k1 and k2 take positive values only because S0 is positive as well as the parameters ai

and bi for i = 1,2.
Next, we look for exponential solutions of the form u(t) = el tc with c 2 C2. For a

non-trivial solution of (3.6), it is required that D(l )c = 0, where D(l ) is the characteristic
matrix:

D(l ) =

"

l +1+ k1e�lt1 �k2e�lt2

�k2e�lt2
l +1+ k1e�lt1

#

, (3.8)

Non-trivial solutions c exist if the characteristic equation is satisfied:

0 = detD(l )

= (l +1+ k1e�lt1 + k2e�lt2)
| {z }

:=D+(l )

(l +1+ k1e�lt1 � k2e�lt2)
| {z }

:=D�(l )

. (3.9)

From this decomposition, it follows that the spectrum of (3.6) is the union of the spectra
of the decoupled equations:

v̇�(t) =�v�(t)� k1v�(t � t1)+ k2v�(t � t2), (3.10a)

v̇+(t) =�v+(t)� k1v+(t � t1)� k2v+(t � t2). (3.10b)
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The spectra of linear DDEs with two delays, like (3.10), have been studied extensively
since the 1960s (for instance, Bellman, Cooke and Hale [10, 60]). The main consensus of
these works is that the stability region often has a complex shape in terms of the parameters
of the differential equation. The majority of the results in the remainder of this section and
the next one (i.e. ‘Bifurcations’ section) could be considered as ‘common knowledge’.
For the purpose of clarity, however, we have chosen to present a short derivation of these
results.

We start by denoting the following theorem regarding symmetry of solutions:

Theorem 3.2. Roots of D� correspond to symmetric solutions, whereas roots of D+ relate
to asymmetric solutions.

Proof. Let Z2 act on R2 so that �1 2 Z2 acts as x (x,y) : (x,y) 7! (y,x), then:

D�(l ) = 0 ,

8

<

:

D(l )v = 0

x v = v
and D+(l ) = 0 ,

8

<

:

D(l )v = 0

x v =�v
. (3.11)

Using the characteristic equation, we can find a relation between the parameters (k1,k2)

and the eigenvalues:

Theorem 3.3. Let l = r + iw for r,w 2 R satisfy the characteristic equation (3.9) and
let t2 > t1 > 0, then the following inequality holds:

|k1|+ |k2|� ert

q

(1+r)2 +w

2, t =

8

<

:

t2 r < 0

t1 r � 0
. (3.12)

Proof. Solutions of the characteristic equation (3.9) satisfy either D+(l ) = 0 or D�(l ) =

0. Upon assuming D+(l ) = 0, it follows that:

emax(�rt1,�rt2)(|k1|+ |k2|)� |k1|e�rt1 + |k2|e�rt2 � |1+r + iw|,

which yields the inequality (3.12). A similar argument for D�(l ) yields the same inequal-
ity.

Corollary 3.4. An equilibrium of the system (3.4) is asymptotically stable if |k1|+ |k2|< 1.

Proof. The inequality (3.12) yields in this case:

ert

q

(1+r)2 +w

2 < 1, (3.13)

which can only hold for r < 0. Therefore, all roots of the characteristic matrix have a
negative real part and the equilibrium is asymptotically stable.
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Having obtained a minimal stability region in the Corollary 3.4, we study conditions for
bifurcations of equilibria to expand the minimal stability region determined by Corollary
3.4.

3.2.2 Bifurcations

The stability of an equilibrium of a DDE is lost when one or more eigenvalues pass through
the origin or the imaginary axis. The first case, in which a real eigenvalue crosses through
the origin, is characterized in the following theorem:

Theorem 3.5. The linearized system (3.6) has at least one zero eigenvalue if and only if
1+ k1 + k2 = 0 or 1+ k1 � k2 = 0.

Proof. Substitution of l = 0 into the characteristic equation (3.9) yields that either
D+(0) = 0 or D�(0) = 0 and hence:

D+(0) = 0 =) 1+ k1 + k2 = 0, (3.14a)

D�(0) = 0 =) 1+ k1 � k2 = 0. (3.14b)

Since the origin is always a fixed point of the system, the conditions in Theorem 3.5
correspond to transcritical bifurcations. For non-trivial fixed points, these conditions imply
either a fold bifurcation or a trans-critical bifurcation. Because k1 and k2 are both positive,
saddle-node bifurcations from D+ cannot occur. This, in combination with Theorem 3.2,
leads to the conclusion that no symmetry-breaking steady-state bifurcations exist, a result
which we also obtained in Theorem 3.1.

The case in which a pair of complex eigenvalues passes the imaginary axis is summa-
rized in the following theorem:

Theorem 3.6. Two piecewise continuous functions h+(w) and h�(w) exist in parameter
space (k1,k2) for which the characteristic equation (3.9) has a pair of purely imaginary
roots l =±iw . Furthermore, when w =� tanwt1 =� tanwt2, a line k1 +sk2 = c exists
for some c and s =±1 for which (3.9) has roots ±iw .

Proof. Substituting l = iw with w > 0 into (3.9) yields that either D+(iw) = 0 or
D�(iw) = 0. The roots of D+(iw) are considered first:

iw +1+ k1e�iwt1 + k2e�iwt2 = 0.

Splitting this equation in its real and imaginary part gives:
"

cos(wt1) cos(wt2)

sin(wt1) sin(wt2)

#"

k1

k2

#

=

"

�1
w

#

. (3.15)
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In the case that this matrix is invertible, we find the unique solution (k1,k2) in terms of w

by matrix inversion:
"

k1

k2

#

= h+(w) :=
�1

sin(w(t2 � t1))

"

sin(wt2) cos(wt2)

�sin(wt1) �cos(wt1)

#"

1
w

#

. (3.16)

In the other case, the matrix is not invertible and, hence, its determinant is zero, yielding:

tanwt1 = tanwt2. (3.17)

Combined with the condition that
h

�1,w
iT

2R(A), A being the matrix in (3.15), follows
that:

w =� tan(wt1) =� tan(wt2). (3.18a)

This yields the line of solutions:

k1 +sk2 =� 1
cos(wt1)

(3.18b)

for s =±1 such that coswt1 = s coswt2.
The roots of D�(iw) are identified in a similar manner, yielding:

"

k1

k2

#

= h�(w) :=
�1

sin(w(t2 � t1))

"

sin(wt2) cos(wt2)

sin(wt1) cos(wt1)

#"

1
w

#

. (3.19)

Furthermore, the same line of solutions and corresponding condition as in (3.18) hold
for D�(iw). For a Hopf bifurcation to occur, any of the equations (3.16–3.19) must be
satisfied.

In Theorem 2, we have already shown that Hopf bifurcations caused by D� correspond
to symmetric periodic solutions. For Hopf bifurcations induced by D+, the following holds:

Theorem 3.7. Hopf bifurcations corresponding with D+ yield asymmetric periodic solu-
tions, i.e., x1(t) = x2(t + 1

2 T ) with T the period of the solution.

Proof. Let l = iw0 for w0 > 0 be a simple root of D+ (i.e., of algebraic multiplicity one)
and p a corresponding eigenvector of D(iw0). Then, from Hopf bifurcation theory, we
know that, for e , sufficiently small C1 functions k⇤(e), w

⇤(e) and x⇤(e) exist, taking values
in R2, R and C([�h,0],R2), respectively. Furthermore, k⇤(e)! h+(w0), w

⇤(e)! w0 and
x(e)(t) = e¬(eiw⇤(e)t p)+ o(e) for e # 0. For k = k⇤(e) and e , sufficiently small 2p

w

⇤(e) -
periodic solutions x(t) = x⇤(e)(t +q) exist with q 2 [0,2p/w

⇤(e)).
Since D+(iw0) = 0, it follows from (3.11) that x p=�p. As the full non-linear equation

commutes with x , it follows that the bifurcating periodic solution inherits this symmetric
property:

x(t + p

w

⇤(e)
) = e¬(eiw⇤(e)t+ip p) = x x(t) (3.20)
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So, the condition for asymmetric periodic solutions is satisfied.

The different conditions for eigenvalues to have zero real part, as determined in Theo-
rems 3.5 and 3.6, are displayed in the (k1,k2)-plane in Figure 3.2. Due to the sine terms in
the denominators of h+ and h�, these functions consist of numerous branches separated
by asymptotes. Intersections of these curves correspond to parameters at which the system
satisfies conditions for two co-dimension one bifurcations and so we expect (at least) the
following co-dimension two bifurcations: Bogdanov-Takens, fold-Hopf and Hopf-Hopf.
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Fig. 3.2 Bifurcation curves in the (k1,k2)-plane. t1 = 11.6 and t2 = 20.3. The right plot shows a detail of
the first quadrant only. Blue shows the conditions for fold or transcritical bifurcations (3.14a) and (3.14b)
and red and magenta depict Hopf bifurcations; equations h+ and h�, respectively. The gray area represents
the stability region as in Corollary 3.4. The full stability region is hatched in the right diagram.

Studying the right diagram of Figure 3.2, we observe that the bifurcation curves do
not coincide with the bounds of the stability region from Corollory 3.4. Hence, it appears
that parameters exist outside this square stability region for which it still holds that all
eigenvalues have negative real part. We now determine the full stability region around the
origin of the (k1,k2)-plane by showing that instabilities are exclusively induced by low
frequencies. More precisely:

Theorem 3.8. The square |k1|+ |k2| <
q

1+w

2
0 contains no eigenvalues l = ±iw for

w � w0 > 0.

Proof. This follows from substitution of l = iw0 into Theorem 3.3 and the fact that
q

1+w

2
0 is a monotically increasing function.

So, if we choose w0 sufficiently large as dictated by Theorem 3.8, no other bifurcations
are located inside the bifurcation diagrams of Figure 3.2 for w >w0. Hence, we can extend
the stability region from the square region to the nearest bifurcation. This new stability
region is hatched in the right diagram of Figure 3.2.
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Since we are mainly interested in stable solutions, we consider only bifurcation curves
that bound the stability region. Even though we identified a bounded stability region in
parameter space, we cannot assure that this is the only region in which fixed points are
stable. As shown in [85], the roots of either D� or D+ can contain multiple, disjoint regions
in parameter space in which all roots have negative real parts. Since in our case, however,
the eigenvalues of (3.6) are the union of the eigenvalues of the (3.10), we conjecture that
no other stable regions exist in parameter space than the one shown in Figure 3.2.

For the fixed parameters t1 = 11.6 and t2 = 20.3, we find that the stability region in
the first quadrant is bounded by a line of fold bifurcations (3.14b) as well as both curves
h+ and h� of Hopf bifurcations; see also Figure 3.3. For clarity, we denote the domains of
w for which these curves bound the stability region by WS(h+) and WS(h�), respectively.
We compute approximations of these ranges:

WS(h+)⇡ (0.148,0.150), WS(h�)⇡ (0.250,0.294). (3.21)

Similarly, we identify the codim-2 bifurcations that bound the stability region. The fold-
Hopf bifurcation is located at:

kZH := h+(0.148) =

"

0.008
1.008

#

. (3.22)

For the Hopf-Hopf bifurcation, we find:

kHH := h+(0.150) = h�(0.294) =

"

0.056
0.995

#

. (3.23)
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Fig. 3.3 Detail of bifurcations. Similar to Figure 3.2 but now showing the fine structure of branches
bounding the stability region. The points ZH and HH correspond with the fold-Hopf and Hopf-Hopf bi-
furcations from (3.22) and (3.23). For clarity, we do not show the stability region. Blue, fold/transcritical;
red, asymmetric Hopf; magenta, symmetric Hopf.
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It follows from (3.7) that, for the trivial equilibrium, the bifurcation diagram in the
(k1,k2)-plane determines the bifurcation diagram in the (a1,a2)-plane up to linear rescal-
ing.

3.2.3 The first Lyapunov coefficient

Hopf bifurcations give rise to either stable or unstable periodic solutions depending on
the criticality. Therefore, we determine the first Lyapunov coefficient. Since it is easier to
relate k1 and k2 to a1 and a2 in the origin than at non-trivial fixed points, we only consider
Hopf bifurcations at the origin.

We follow the method described in [41]. Let p and q be eigenvectors of the char-
acteristic matrix D(iw) and D

⇤(iw), respectively. We normalize these vectors such that
qT

D

0(iw)p = 1. By choosing p = [1,1]T as an eigenvector of D(iw), q takes the form:

q = q0

"

1
1

#

:=
1

2(1� k1t1e�iwt1 + k2t2e�iwt2)

"

1
1

#

. (3.24)

For f(t) = peiwt , the first Lyapunov coefficient of a (candidate) Hopf bifurcation is defined
as the real part of c1:

c1 =
1
2

qT D3f(0)(f ,f , f̄)

+qT D2f(0)(e0·
D(0)�1D2f(0)(f , f̄),f)

+
1
2

qT D2f(0)(e2iw·
D(2iw)�1D2f(0)(f ,f), f̄). (3.25)

We note that f is symmetric, i.e., f j([x,x]) = f (x) for j = 1,2, and that it does not contain
any cross terms, that is ∂

2

∂x1∂x2
f([x1,x2]) = 0. Therefore, both components of the differen-

tial operators D2f([x,x]) and D3f([x,x]) will be identical when evaluated for symmetric
arguments and we denote these components by f 00(x) and f 000(x), respectively. By using
the multi-linear properties of the operators, we expand c1:

c1 =
1
2

q0

h

1 1
i

f 000(0)(eiwt ,eiwt ,e�iwt)

"

1
1

#

+q0

h

1 1
i

f 00(0)(eiwt ,e�iwt) f 00(0)(e0t ,eiwt)D(0)�1

"

1
1

#

+
1
2

q0

h

1 1
i

f 00(0)(eiwt ,eiwt) f 00(0)(e2iwt ,e�iwt)D(2iw)�1

"

1
1

#

. (3.26)

Evaluation of the differential operators and the matrix inversions yields:
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c1 = q0

✓

�S000(0)(a1b

3
1 e�iwt1 �a2b

3
2 e�iwt2)

+
2S00(0)2(a1b

2
1 �a2b

2
2 )(a1b

2
1 e�iwt1 �a2b

2
2 e�iwt2)

1+a1b1 �a2b2

+
S00(0)2(a1b

2
1 e�2iwt1 �a2b

2
2 e�2iwt2)(a1b

2
1 e�iwt1 �a2b

2
2 e�iwt2)

1+2iw +a1b1e�2iwt1 �a2b2e�2iwt2

◆

. (3.27)

As the real part of this expression is too intricate to study analytically, we study the first
Lyapunov coefficient only numerically.

In Figure 3.2, we observe that, for chosen parameter t1 = 11.6 and t2 = 20.3, the
stability region is primarily bounded by the curve h�(w) and so we study the Lyapunov
coefficient along this boundary. Similarly as in [125], we choose b1 = 2, b2 = 1.2 and

S(x;a) = (tanh(x�a)+ tanh(a))cosh2(a), (3.28)

with a = 1. Values of a1 and a2 are parameterized along the boundary using (3.7) and
(k1,k2) given by h�(w) with w 2 WS(h�). In this case, we find that the first Lyapunov
coefficient has a root at:

kGH := h�(0.281) =

"

0.491
0.614

#

. (3.29)

Such a root corresponds with a generalized Hopf bifurcation at which the criticality of the
Hopf bifurcation changes. Hence, for w < 0.281, the Hopf bifurcations are supercritical
and for w > 0.281 the bifurcations are subcritical.

So far, we have studied the fixed points and their bifurcations extensively, and we have
shown that the system can exhibit stable periodic solutions. Since the further development
of these periodic solutions cannot be studied with a local analysis of points, we must
use a different approach to continue this study. Therefore, we explore the behavior of the
periodic solutions numerically in the next section.

3.3 Numerical bifurcation analysis

Here, we investigate the outcome of the periodic solutions that emanate from the Hopf
bifurcations in the above text. We turn to a numerical analysis since the orbits cannot be
determined analytically. More specifically, we use DDE-BIFTOOL [46] to study non-trivial
fixed points, and for continuation of periodic solutions, we use Knut [101]. In the following
analysis, we only describe branches of solutions that are by some means associated with
stable solutions. Branches not resulting in stable solutions are not discussed further.
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3.3.1 One parameter bifurcations in a2

First, a bifurcation analysis is done in a single parameter. Here, we have chosen to vary the
parameter a2 that represents the total amount of excitation in the system. The inhibition
a1 is fixed at 0.069, and the function S is chosen as (3.28) with a = 1.

The bifurcation diagram is shown in Figure 3.4, and corresponding parameter values
for the bifurcations are shown in Table 3.1. Each curve represents, for different solutions,
the maximum value reached during one period of the solution at different parameter val-
ues. The color corresponds with the type of solution, while thick/thin lines correspond to
stable/unstable branches.

Table 3.1 Overview of approximate parameter values for codim-1 bifurcations in a2. Parameter a1 is
fixed at 0.069.

Point a2

H1 0.771
B1 0.948
F1 0.5211
H2 0.5212
H3 0.5212
H4 1.052

PD1 0.650
LPC1 0.462
PD2 0.465
PD3 0.596
LPC2 0.615
PD4 0.522
LPC3 0.464
LPC4 0.619

3.3.1.1 Fixed points

The origin is a natural starting point of our discussion of the bifurcation analysis because
it is always a fixed point of (3.4). The origin is stable until it undergoes a subcritical Hopf
bifurcation H1. Thereafter, it goes through two other Hopf bifurcations and a branch point
B1. For this value of a1, these Hopf bifurcations involve only unstable periodic solutions.

Next, we follow the fixed point that emerges from the branch point B1. This fixed point
encounters numerous Hopf bifurcations until it reaches a fold bifurcation F1. Thereafter, it
rapidly undergoes two distinct subcritical Hopf bifurcations: H2 and H3, becoming stable at
H3. Continuing the intersecting fixed point at B1 in the other direction, the steady state goes
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Fig. 3.4 Bifurcations in one parameter. The top shows the bifurcation diagram in a2. Different colors
represent different solutions, and a thick/thin line indicates that such a solution is stable/unstable. The
four diagrams at the bottom show details of the four marked regions in the top diagram. t1 = 11.6,t2 =

20.3,a1 = 0.069,b1 = 2,b2 = 1.2.

through two Hopf bifurcations until it gains stability at the subcritical Hopf bifurcation H4

(not shown).
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The appearance of Hopf bifurcations for fixed points is detailed in the ‘Bifucations’section
and Figure 3.2. If the trivial fixed point is considered, the variation of a single parameter
maps the coefficients k1 and k2 into a straight line (3.7). This line, labeled ET , is shown in
the k1,k2-plane in Figure 3.5. The coefficients k1 and k2 belonging to non-trivial equilibria,
however, vary in a more complex manner when a single parameter is adjusted. Once plot-
ted, it becomes clear that this branch encounters 18 Hopf bifurcations between departure
from and return to the stability region for this specific value of a1 (see the curve EN in
Figure 3.5).

Whether a Hopf bifurcation is caused by a crossing of D� or D+ determines whether
this Hopf bifurcation results in symmetric or asymmetric periodic solutions. Hence, we
conclude that Hopf bifurcations H1, H2 and H4 yield symmetric periodic solutions, and
that H3 yields asymmetric ones.

E
T
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E
N
�Ơ2)

H4
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F1
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1.2
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0
0 0.1 0.2 0.3 0.4

Fig. 3.5 Mapping to (k1,k2)-plane. The curves ET (a2) and EN(a2) show the parametrization of the
origin (trivial fixed point) and non-trivial fixed points, respectively, for fixed a1. This figure illus-
trates how some solution branches can regain stability after encountering numerous bifurcations. Blue,
fold/transcritical; red, asymmetric Hopf; magenta, symmetric periodic solution; black, parametrization of
fixed points.

3.3.1.2 Periodic solutions

Next, we investigate the periodic solutions emanating from the Hopf bifurcations H1,
H2 and H3. The branch of unstable periodic solutions that emerges from H1 consists of
symmetric solutions. This matches with the analytical results since H1 lies on h� and it,
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therefore, corresponds with symmetric solutions. The branch subsequently goes through
a subcritical Neimark-Sacker bifurcation (not shown), a supercritical period-doubling bi-
furcation PD1, a limit point of cycles LPC1 and a subcritical period-doubling bifurcation
PD2 at which it finally becomes stable. Then, the solution remains stable until it under-
goes a supercritical period doubling bifurcation PD3, folds over in LPC2, goes through a
subcritical period doubling bifurcation PD4 and terminates in the Hopf bifurcation H2.

Solutions branching from PD1 are asymmetric. This branch folds over near PD1 and a
second time at LPC3 where it gains stability. Following this branch, stability is lost at LPC4

and it ends in Hopf bifurcation H3. We mention a branch sprouting from PD3 of symmetric
solutions that is initially stable but then folds over three times before it terminates in PD4.
Even though these solutions are initially stable, we have been unable to find these solutions
in simulations because their domain of attraction is relatively small.

3.3.1.3 Summary

For fixed a1, we find that system can have one or two stable steady states. More specifi-
cally, for values of a2 between H3 and H1, two stable equilibria coexist. Stable symmetric
periodic solutions exist for a2 between PD2 and PD3, and stable asymmetric periodic solu-
tions between LPC3 and LPC4. Multi-stability of two equilibria and two periodic solutions
exists for a2 between H3 and PD3. This is illustrated in Figure 3.6 where we calculated
time series of the model with fixed parameters (a2 = 0.55) but varying initial conditions:

[x1,x2](t) = [0,0.1], (3.30a)

[x1,x2](t) = [1.5,1.7], (3.30b)

[x1,x2](t) =


1+1.2sin
✓

2p

15
t
◆

,0.8+1.3sin
✓

2p

15
t
◆�

, (3.30c)

[x1,x2](t) =
h

0.7+0.7sin
⇣

p

30
t
⌘

,0.6�0.9sin
⇣

p

30
t
⌘i

, (3.30d)

with �20.3  t  0. All four types of limiting behavior, as determined by the preceding
bifurcation analysis, are observed.

3.3.2 Two parameter bifurcations in a1 and a2

As stated before, we are mainly interested in the bifurcations at which stable solutions
become unstable. These bifurcations (found with a one parameter analysis) are, therefore,
continued in two parameters (a1 and a2). Figure 3.7 shows the relevant part of the bi-
furcation diagram of the system and Table 3.2 presents parameter values of the indicated
bifurcation points. A small detail is magnified, but it shows a caricature of the complex
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Fig. 3.6 Time series in multi-stable regime. Time series of the system for a2 = 0.55, other parame-
ters as in Figure 3.4 and initial conditions given by (3.30). Solid and dashed lines correspond with x1

and x2. Solutions of all four stable branches are obtained: (A) trivial steady state, (B) non-trivial steady
state, (C) symmetric periodic solutions and (D) asymmetric periodic solutions. Colors of these time series
correspond with the branches in Figure 3.4.

structure. Mixed colors are used to indicate the co-existence of multiple stable solutions,
but for clarity, we also show the stability regions for each type of solution separately in
Figure 3.8.

3.3.2.1 Steady states

In the one-parameter analysis, we have found that the origin and the non-trivial steady
state turn unstable at Hopf bifurcations H1 and H3, respectively. Continuing H1 in two
parameters yields a Hopf bifurcation curve, and on this curve, we find a Hopf-Hopf bifur-
cation HH1. Following the second Hopf branch (H5) involved, we find a transcritical-Hopf
point ZH1 as it collides with B1. This corresponds with the analysis of ‘Bifurcations’ sec-
tion where we showed the existence of zero-Hopf and Hopf-Hopf points; see (3.22) and
(3.23)). The arrangement of these curves is the same as in Figure 3.3 except for scaling.
Since all involved Hopf curves at the points HH1 and ZH1 are subcritical, it follows then
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Fig. 3.7 Bifurcations in two parameters. Bifurcation diagram in a1 and a2. Colored regions mark stabil-
ity regions of indicated solutions. Overlapping areas, depicted with mixed colors, correspond with multi-
stability. See text for a description of the points. Stability regions for individual solutions are shown in
Figure 3.8 for clarity.

from the normal form analysis [74] that, for these parameters, no extra stable solutions
exist near these points. Our analysis of the first Lyapunov coefficient also revealed the ex-
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Table 3.2 Overview of approximate parameter values for codim-2 bifurcations in a1 and a2.

Point a2 a1

HH1 0.829 0.028
ZH1 0.840 0.004
GH1 0.512 0.246
ZH2 0.440 0.008
FF1 0.455 0.158
R21 0.460 2.9e-4
FF2 0.460 2.8e-4
R22 0.460 2.9e-4
FF3 0.460 2.8e-4
CP1 0.421 0.390
CP2 0.460 2.8e-4
CP3 0.481 0.168
R11 0.531 0.114
CP4 0.460 0

GH1 GH1

HH1
ZH1

ZH2

FF1

CP1

R11

CP3

Fig. 3.8 Regions of multi-stability. Identical to Figure 3.7, but showing the stability regions of each type
of solution separately. Two partially overlapping ‘triangles’ corresponding with stability of fixed points
(left), stability region for symmetric periodic solutions with a small area of bistability caused by cusp point
CP1 (middle), and region in parameter space where stable asymmetric periodic solutions exist (right).

istence of a generalized Hopf bifurcation; see (3.29). We numerically identify this point
GH1 along the branch of H1 by finding an emanating branch of limit point of cycles LPC1

with Knut. When the Hopf bifurcation H3 of the non-trivial equilibrium is followed, a
zero-Hopf bifurcation ZH2 is found as H3 collides with fold bifurcation F1. We remark
that the curves H3 and F1 are undistinguishable in the diagram since they are close to each
other for all (a1,a2) considered. The bifurcation ZH2 is a simple case ([74], s = 1,q > 0),
yielding no additional stable solutions. These curves and the corresponding stability re-
gions are shown in Figures 3.7 and 3.8. Bi-stability is indicated by the overlapping, darker
region.
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3.3.2.2 Symmetric periodic solutions

The stability region of the symmetric periodic solutions is bounded by PD2 and PD3. Con-
tinuation of PD2 for stronger inhibition reveals a fold-flip bifurcation FF1 where the period
doubling bifurcation hits LPC1 branch. Thereafter, it bends away and terminates. Contin-
uing the LPC1 curve in the same direction, we first find a cusp point CP1 after which the
curve ends in the generalized Hopf bifurcation GH1. When PD2 is continued in the other
direction (less inhibition), it undergoes a 1:2-resonance bifurcation R21 (i.e., the period
doubling branch encounters a period-doubling), and thereafter, it is subjected to a fold-flip
bifurcation FF2 with LPC1. Following the LPC1 curve at FF2, we encounter another fold-
flip bifurcation FF3 and a cusp bifurcation CP2. At this cusp point, the branch merges with
LPC2. The branch PD3 does not undergo any bifurcation when continued for stronger inhi-
bition. Continuation in the other direction reveals a 1:2-resonance bifurcation R22 and the
previously identified fold-flip bifurcation FF3. Unfolding the 1:2-resonance bifurcations
R21 and R22 reveals that both points are connected by the curve NS1 of Neimark-Sacker
bifurcations. Therefore, this curve is also part of the boundary of the stability region of
symmetric periodic solutions. From the unfolding of these 1:2-resonance bifurcations, we
know that branches of stable homoclinic orbits should exist. However, we have been un-
able to continue these branches.

3.3.2.3 Asymmetric periodic solutions

From single parameter continuation, it follows that stable asymmetric oscillations are
bounded by LPC3 and LPC4. Continuation of LPC3 yields a cusp point CP3 and a 1:1-
resonance bifurcation R11 at which the branch becomes unstable. Hereafter, the stability
region is bounded by a branch of Neimark-Sacker bifurcations NS2 that sprouts from R11.
When LPC3 is continued in the other direction, it undergoes a cusp bifurcation (CP4) at
a1 = 0 where LPC3 merges with LPC4.

3.3.2.4 Summary

With the two-parameter bifurcation analysis, we find that a large part of parameter space
corresponds with multi-stability. In the center, we find a region with four different stable
solutions: two steady states and two periodic solutions. Furthermore, it can be seen that
steady states destabilize for strong values of inhibitory feedback (a1 large) since only
periodic solutions exist in the upper part of the bifurcation diagram.
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3.3.3 Comparison with a realistic model

As this two-parameter bifurcation study might seem contrived for a fairly simple model,
we like to make a comparison with a study of a more biologically realistic model. Van
Drongelen et al. analyzed a small model of neocortex consisting of 656 neurons to study
emergent epileptiform activity [113]. For similar reasons as in this study, they varied only
parameters related to excitatory and inhibitory synaptic strength, and they then obtained
Figure 3.9. In this figure, the behavior of their realistic model for different choices of
parameters is categorized in one of five categories: desynchronized, irregular bursting,
oscillatory, regular bursting and saturated activity. The small exemplary time series show
for each class the characteristic behavior of the model except for saturated activity. This
latter state is best described as a state in which all neurons are non-stop activated in an
incoherent manner. 

 
3

and 3c. The conductance for NaP was calculated as the 
product of the maximum conductance (100 S/m2), an 
activation (m) and inactivation (h) factor. For the activation 
parameter: Dm = 10000/{exp {-(v-12)/9} + 1}, and E m = 
10000-D. In neocortical pyramidal neurons we observed slow 
inactivation of the persistent sodium current, therefore we 
have included an inactivation term (h) following the kinetics 
described by [23]: Wh =1/(D+E)= 20/cosh {-(v-5)/9}, and h� = 
D/(D�E) = 1.0/{exp {(v-5)/9} + 1}. The rate variables D��E are 
in s-1 and the time constantW is in s. Pyramidal neurons with 
NaP channels demonstrated spontaneous bursting activity. 
This bursting cell model represented the different neocortical 
bursting populations. 

 
B. Microcircuitry 

The microcircuitry in the computational model is based on 
the horizontal and vertical organization of the neocortex [24]-
[26]. The cell types and their connectivity within the 
computational model network are shown in Fig. 1. The 
excitatory cell population, representing 80% of the neurons, 
consists of units representing superficial pyramidal cells 
concentrated in layers 2, 3 (S; Fig. 1) and deep pyramidal cells 
in layers 5, 6 (D; Fig. 1). The pyramidal neurons have mutual 
excitatory connections and are inhibited by smaller 
interneurons (I; Fig. 1a). This structure forms the basis for the 
neocortical circuitry that was first proposed in the 1990s, for 
example [5], [26], [27]. We extended the canonical 
microcircuitry to include different inhibitory cell types (Ba, 
basket cells; C, chandelier cells; Fig. 1b) and spontaneously 
bursting cells [5], [28], [29]. The cell models were arranged in 
three layers: the superficial pyramidal cells at a depth of 350 
Pm, the interneurons at a depth of 900 Pm, and the deep 

pyramidal cells at a depth of 1450 Pm. Interdistances were set 
to 5 Pm and 15 Pm for the pyramidal cells and interneurons 
respectively. 

 
Fig. 1.  Cell types and connectivity in the computational model. (a)
Excitatory connections and gap junctions between the model elements. (b)
Inhibitory connections. Superficial (S) and deep (D) pyramidal cells create a
network of recurrent excitation. Inhibitory cell types (I) are connected to the
pyramidal cell network and have direct electrical coupling by gap junctions,
symbolized by the resistor symbol (R). The inhibitory cell population in the
model consists of basket cells (Ba) and chandelier cells (C). These
interneurons inhibit the pyramidal neurons creating feedback and
feedforward loops. A small percentage of the basket cells inhibit other
GABAergic interneurons, providing disinhibition.  
 

 
Fig. 2.  Impact of variations in excitatory and inhibitory synaptic strengths
(in arbitrary units, AU) on the calculated extracellular activity.  The domains
of activity patterns in the excitation-inhibition parameter space are shown in 
(a), and representative simulated activity patterns in (b). The arrow indicates 
the path that was followed to generate the seizure onset activity in Fig. 3.
Abbreviations: D-desynchronized activity, IB-irregular bursting, O-
oscillatory activity, RB-regular bursting.    

We included three types of basket cell classified on the 
basis of their axon arbor spread [28] into local (LAC), 
medium (MAC), and wide arbor cells (WAC). The maximum 
probability of pyramidal cells to interconnect was set to 10% 
and decreased with distance (d  in Pm) according to exp{-
300d}; connectivity between pyramidal cells and interneurons 
was 25%. In this study we focused on the synchronizing 
effects of local processes; long-range connections between 
excitatory neurons (i.e. >1 mm) were not included. The 
inhibitory interneurons connected to the pyramidal cells with a 
probability of 0.5%, 1%, 4%, and 4% for the WAC, MAC, 
LAC, and chandelier cell respectively [16], [28]. Probability 
for the interconnections between the basket cells was 14% 
[16], [26], [29].  

Conductance in the synapse was simulated with an alpha 
function for the excitatory synapses and a dual exponential 
function for the inhibitory connections. In these functions we 
used values for the time constants described by [30]. Effects 
of synaptic strength were studied by applying a scale factor to 
the maximum conductance of the excitatory synaptic contacts 
(Fig. 1a, e in Table I) and the inhibitory connections (Fig. 1b, 
i in Table I) independently.  
 
C.    Emergent Bursting Behavior 
 The model network generated a broad variety of behavior 
that depended critically on the strength of the synaptic 
connections between neurons as well as the presence of NaP 
channels. An overview of the activity patterns is shown in Fig. 
2, in which synaptic strength was varied by applying two 
independent scale factors to the maximum synaptic 
conductances: one to the excitatory synapses shown in Fig. 1a, 
and one to the inhibitory connections depicted in Fig. 1b.  

Fig. 3.9 Behavior of a detailed network. This figure, copied with permission from [113], shows the
behavioral changes of a large physiologically detailed model of neocortex. For varying strengths of exci-
tatory and inhibitory connections, the model’s behavior is classified in one of five categories. See text for
a description of the network states and their correspondence to the population model.

In the regular bursting state, the model is rather quiet apart from a burst of activity that
occurs regularly about every second. These bursts are primarily generated by slow dynam-
ical processes in the underlying neurons. In the absence of slow processes, the network
would exhibit no activity in this state [113]. Hence, this type of behavior should be com-
pared with the trivial steady state of our model. Furthermore, the non-trivial steady state
in our simplified model corresponds with saturated activity in the detailed model because
the network is very active, but no clear oscillations or rhythms are observed. Finally, the
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oscillatory state can be compatible with both the symmetric and asymmetric periodic so-
lutions in our model. With these analogues for the observed types of network behavior in
our mind, the bifurcation diagram in Figure 3.7 displays several strong similarities with
the detailed network model in Figure 3.9. For low excitation, both models exhibit regu-
lar bursting/trivial steady-state solutions. Furthermore, we see in both cases a triangular
region at the bottom in which both models exhibit saturated/non-trivial steady-state solu-
tions. Finally, we observe that the above-mentioned regions are separated by a regime of
oscillatory solutions. We also note that not all types of behavior in the detailed model have
a counterpart in the simplified model, but we will elaborate on this in the discussion.

3.4 Discussion

In this paper, we have studied a continuous time two-node Hopfield network with two dis-
crete time delays. The model has been derived in [125], and it describes the activity of
two excitatory neural populations located in different layers of the mammalian neocortex.
Inhibitory connections are assumed to exist only between neurons within the same pop-
ulation, whereas excitatory connections are exclusively made between both populations.
Furthermore, a bifurcation study in the same article has shown that the model is able to
produce different types of behavior that correspond to a realistic 656-neuron model of
neocortex as proposed in [112]. This detailed model is able to reproduce phenomena ob-
served in in vitro experiments in mouse [113]. By studying the population model more
thoroughly, we hope to gain a better understanding of the complex dynamics seen in the
realistic 656-neuron model. In this way, new experiments for both in silico and in vitro
environments can be proposed.

Even though Hopfield networks of this and similar forms have been studied thoroughly
in other works, these works mainly consider changes of the dynamics under variation of
the time delays. As the time lags in our model are fixed because of the physiological
background, we are mainly interested in the dynamics’ dependency on connectivity pa-
rameters. As a new contribution to this field, we have focused our study of the model on
varying connection strengths of excitatory and inhibitory connections.

All the bifurcations that we have identified in the model, both analytically and nu-
merically, satisfied the non-degeneracy condition. Combined with the fact that the model
depends smoothly on all parameters, all these bifurcations are structural. Hence, local
variations of parameters will result in local variations of the bifurcations and the stability
region. Some of the delicate bifurcation structures that we identified will be more sensitive
to parameter variations, but only because of their limited separation in parameter space.

For the steady states in the model, we have analytically determined conditions in terms
of the coupling parameters for which these states become unstable due to bifurcations.
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We have found that both the trivial and the non-trivial equilibria undergo fold as well as
Hopf bifurcations. The non-trivial equilibria, however, are the solution of a transcendental
equation, and therefore, we have studied these bifurcations numerically. In this manner,
we have identified a region in parameter space of bi-stability in which both the trivial and
a non-trivial fixed point are stable.

By studying the first Lyapunov coefficient at the Hopf bifurcations in the system, we
have found both supercritical and subcritical bifurcations. Furthermore, we have analyt-
ically determined the type of bifurcating periodic solution, either symmetric (in-phase)
or asymmetric (anti-phase) oscillations. The evolution of the periodic solutions arising
at the Hopf bifurcations is studied numerically with continuation software. A large re-
gion in parameter space is determined in which both types of periodic solutions co-exist.
Furthermore, we have identified numerous codim-2 bifurcations: cusp, generalized Hopf,
zero-Hopf, Hopf-Hopf, fold-flip and both 1:1 and 1:2 resonance bifurcations. In the area
where bistability exists between these different solutions, simulations have shown that the
solutions often tend to the asymmetric solutions.

Combining the stability regions of the steady states and the periodic solutions, we have
found a region in parameter space in which four types of stable solutions co-exist: the
trivial fixed point, a non-trivial fixed point and both symmetric and asymmetric periodic
solutions. Although it has been shown in [83] that small Hopfield networks can exhibit
chaotic behavior, we have not found such behavior in this study.

The biological relevance of these results is, in our opinion, significant as well. We have
shown that the complex bifurcation structure of the model matches with the dynamical
changes seen in a biologically relevant model for variations of both excitatory and in-
hibitory strengths [113]. This relation is most clear for the regular bursting, oscillatory and
saturated states of the detailed model because these have a clear equivalent attractor in the
population model studied in this article. The other states of the detailed network, however,
might be produced by the population model as part of a transient behavior.

Although the considered model has very little resemblance with the structures of a
real brain, we still believe that studying models like these provide new insights. Complex
bifurcation structures and multi-stability observed in these models reveal possible transi-
tions of network behavior that might not have been considered before. For that reason, we
plan to seek and analyze such critical transitions more accurately with a detailed model of
neuronal activity.

Furthermore, we plan to investigate networks of similar systems in order to study emer-
gent patterns. It is promising that the combined analytical/numerical study of a single
column already shows interesting dynamics, in particular, multi-stability. We expect to
find patterns in such networks that will be relevant to understand observed patterns in slice
experiments.





Chapter 4
On neural fields with transmission delay

Abstract Neural field models with transmission delay may be cast as abstract delay dif-
ferential equations (DDE). The theory of dual semigroups (also called sun-star calculus)
provides a natural framework for the analysis of a broad class of delay equations, among
which DDE. In particular, it may be used advantageously for the investigation of stability
and bifurcation of steady states. After introducing the neural field model in its basic func-
tional analytic setting and discussing its spectral properties, we elaborate extensively an
example and derive a characteristic equation. Under certain conditions the associated equi-
librium may destabilise in a Hopf bifurcation. Furthermore, two Hopf curves may intersect
in a double Hopf point in a two-dimensional parameter space. We provide general formu-
las for the corresponding critical normal form coefficients, evaluate these numerically and
interpret the results1.

4.1 Introduction

Spatial coarse graining of neural networks leads to so-called neural field models in which
the average firing rates of underlying populations of neurons, as opposed to individual
neuronal spikes, are considered. Such models have not changed substantially since the
seminal work of Wilson and Cowan [132, 133], Amari [2] and Nunez [94]. Due to in-
trinsic delays of axons, synapses, and dendrites in the natural system, the role of de-
lays in spatiotemporal dynamics of neural activity has received considerable attention
[80, 67, 65, 102, 123, 66, 64, 32, 30, 29]. Faugeras and coworkers investigated stability
properties of stationary solutions using methods from functional analysis [120, 50, 121].
A first step towards Hopf bifurcation is made in [119], where Hopf bifurcation curves are

1 Adapted from SA van Gils, SG Janssens, YuA Kuznetsov and S Visser, On local bifurcations in neural
field models with transmission delays, Journal of Mathematical Biology, to appear.
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computed. In [47] the principle of linearised stability and the Hopf bifurcation to periodic
orbits were studied in the absence of delays.

To set the stage, we have in mind p � 1 populations consisting of neurons that occupy
fixed positions in a non-empty, bounded, connected, open region W ⇢ Rn. For each i =
1, . . . , p let Vi(t,r) be the membrane potential at time t, averaged over those neurons in the
ith population positioned at r 2 W . These potentials are assumed to evolve in the absence
of time dependent external stimuli according to the system of integro-differential equations

∂Vi

∂ t
(t,r) =�aiVi(t,r)+

p

Â
j=1

Z

W

Ji j(r,r0)S j(Vj(t � ti j(r,r0),r0))dr0 (4.1)

for i = 1, . . . , p. The intrinsic dynamics exhibit exponential decay with ai > 0 for i =
1, . . . , p. The propagation delays ti j(r,r0) measure the time it takes for a signal sent by
a type- j neuron located at position r0 to reach a type-i neuron located at position r. For
the definitions and interpretation of the real valued connectivities Ji j and the positive, real
valued synaptic activation functions S j appearing in (4.1) we refer to §2 of [121].

The aim of this paper is to demonstrate how general theory from the field of delay equa-
tions can be used successfully to analyse stability and bifurcation of equilibrium solutions
of (4.1). For this we consider a specific class of delay equations of the form

(

ẋ(t) = F(xt) t � 0

x(t) = f(t) t 2 [�h,0]
(DDE)

where Y is a Banach space, F : C([�h,0];Y ) ! Y is a smooth Y -valued function on the
Banach space of continuous Y -valued functions equipped with the supremum norm,

xt(q) := x(t +q) 8 t � 0, q 2 [�h,0]

is the history at time t � 0 and f 2 C([�h,0];Y ) is an initial condition. The parameter
h 2 (0,•) is a finite delay. As the reader may have expected, the acronym DDE stands for
delay differential equation.

Systems of this type naturally extend the case of classical DDE with Y =Rn for which a
rather complete dynamical theory based on perturbative calculus of dual semigroups [24],
[25], [26], [27], [40] is available in [41]. Recently it was understood that, from an abstract
viewpoint, various apparently different classes of delay equations can be cast and analysed
within the same functional analytic framework of dual perturbation theory, largely inde-
pendently of the particulars of a certain class. It is only in the choice of the underlying
function spaces and the spectral analysis that these details matter. In [37] purely functional
equations (also called renewal equations) as well as systems of renewal equations coupled
to delay differential equations are investigated for the Rn-valued case and finite delay. In
[39] the analysis is extended to the case of infinite delay. In [38] abstract (Banach space
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valued) renewal equations with infinite delay are considered. The forthcoming paper [117]
treats general aspects of abstract equations of the type (DDE).

The outline of this paper is as follows: in §4.2 we introduce the functional analytic
setting and state the equivalence between the abstract delay equation and an abstract in-
tegral equation using sun-star calculus. We also state a linearization theorem. In §4.3 we
start with some general results on the resolvent and spectra, primarily based on [45]. For
a specific class of connectivity functions, i.e. finite sums of exponentials, and in one spa-
tial dimension, we explicitly calculate the spectrum and the resolvent. It turns out that the
point spectrum is determined by a determinant condition. In §4.4 we give the normal form
coefficients for the critical center manifold in case of Hopf and double Hopf bifurcation.
This is applied in §4.5 to a scalar neural field equation with a bi-exponential connectivity
function modelling an inverted Wizard hat. The system is discretised as in [50] and the
spectrum of the discretised system is compared with the true spectrum, showing conver-
gence. We identify in the true spectrum a Hopf point and a double Hopf point. For both
cases the normal form coefficients are computed, which allows us to identify the sub-type
of the bifurcation at hand. The theoretical results are confirmed by numerical experiments.
We end this paper in §4.6 with conclusions and an outlook on future work.

Upon finishing this paper we encountered the online preprint [122], addressing similar
questions. We feel that there are enough substantial differences between the two papers to
render both of them interesting. Moreover, we have reasons to believe that the choice Y =

L2(W) for the spatial state space made in [122] leads to non-trivial technical complications,
see §4.2.4 below. In this paper, we employ sun-star calculus, from which a number of
general results is immediately available. The center manifold, for instance, was obtained
in [41] for the abstract integral equation, covering what we need here.

4.2 Functional analytic setting

4.2.1 Basic definitions and assumptions

It is rather straightforward to associate with (4.1) a problem of the type (DDE), but see
§4.2.4. To keep the setting as simple as possible, we focus on the single population case
p = 1 when (4.1) takes the form

∂V
∂ t

(t,r) =�aV (t,r)+
Z

W

J(r,r0)S(V (t � t(r,r0),r0))dr0 (4.2)

For mathematical convenience we extend the spatial domain W by its boundary ∂W and
work on W ⌘ W [∂W with Lebesgue measure |W |< •. We formulate a number of basic
hypotheses on the modelling functions appearing in (4.2). These will be tacitly assumed to
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hold throughout the remainder of this paper. More specific functional forms will be chosen
in subsequent sections.

(HJ) The connectivity kernel J 2C(W ⇥W).

(HS) The synaptic activation function S 2C•(R) and its kth derivative is bounded for
every k 2 N0.

(H
t

) The delay function t 2C(W ⇥W) is non-negative and not identically zero.

From (H
t

) we see that t is bounded on the compact set W . Hence we may set

0 < h := sup{t(r,r0) : r,r0 2 W}< •

Let Y :=C(W) be the Banach space of continuous real-valued functions on W with norm

kyk := sup
r2W

|y(r)|,

We also set X := C([�h,0];Y ). When f 2 X , t 2 [�h,0] and r 2 W we will sometimes
abuse notation and write f(t,r) instead of f(t)(r). On X we have the norm

kfk := sup
t2[�h,0]

kf(t, ·)k

Define the nonlinear operator G : X ! Y by

G(f)(r) =
Z

W

J(r,r0)S(f(�t(r,r0),r0))dr0 8f 2 X , 8r 2 W (4.3)

The following lemma is standard, but in light of the difficulties pointed out in §4.2.4 we
provide a detailed proof.

Lemma 4.1. G : X ! Y is well-defined by (4.3).

Proof. Obviously, for any f 2 X the map

[�h,0]⇥W 3 (t,r) 7! f(t,r) 2 R (4.4)

is continuous.
Now, given f 2 X we consider for points r,r 2 W ,

|G(f)(r)�G(f)(r)|
�

�

�

Z

W

[J(r,r0)� J(r,r0)]S(f(�t(r,r0),r0))dr0
�

�

�

+
�

�

�

Z

W

J(r,r0)[S(f(�t(r,r0),r0))�S(f(�t(r,r0),r0))]dr0
�

�

�

CS

Z

W

|J(r,r0)� J(r,r0)|dr0

+CJ

Z

W

|S(f(�t(r,r0),r0))�S(f(�t(r,r0),r0))|dr0



4.2 Functional analytic setting 55

where CS > 0 and CJ > 0 are constants bounding S and J. Let e > 0 be given. By the
uniform continuity of J on W ⇥W there exists dJ > 0 such that the first integral does not
exceed |W |e for all r,r 2 W satisfying |r� r|  dJ . Regarding the second integral, the
continuity of (4.4) and (H

t

) implies the continuity of

W ⇥W 3 (r,r0) 7! f(�t(r,r0),r0) 2 R (4.5)

Let I ⇢ R be a compact interval containing the range of (4.5). Then S is uniformly contin-
uous on I. Hence there exists dS > 0 such that |S(u)� S(v)|  e for all u,v 2 I satisfying
|u� v| dS. Since (4.5) is uniformly continuous, there exists d

0 > 0 such that |r� r| d

0

implies |f(�t(r,r0),r0)�f(�t(r,r0),r0)| dS for all r0 2W . Consequently, if |r�r| d

0

then the second integral does not exceed |W |e .

Using the definition (4.3) of the operator G, we see that studying (4.2) is equivalent to
analyzing the following initial value problem

(

V̇ (t) =�aV (t)+G(Vt) t � 0

V (t) = f(t) t 2 [�h,0]
(NF)

where V : [�h,•)! Y is the unknown and f 2 X is the initial condition. Then (NF) is of
the form (DDE) when we define F : X ! Y by

F(f) :=�af(0)+G(f) 8f 2 X (4.6)

with G given by (4.3). The notion of a solution of (DDE), and consequently (NF), is a
direct generalisation of the solution concept for classical DDE.

Definition 4.2. A function x 2C([�h,•);Y )\C1([0,•);Y ) that satisfies (DDE) is called
a global solution of (DDE). ⌃

Sometimes we will omit the qualifier global and simply speak of a solution of (DDE). We
conclude with a simple observation, which follows directly from the fact that (HS) implies
that S satisfies a global Lipschitz condition.

Lemma 4.3. The operator F : X ! Y defined by (4.6) is globally Lipschitz continuous.

Proof. It suffices to show that G satisfies a global Lipschitz condition. If f ,f 2 X and
r,r0 2 W , then

|f(�t(r,r0),r0)�f(�t(r,r0),r0)| sup
r002W

|f(�t(r,r0),r00)�f(�t(r,r0),r00)|

 sup
t2[�h,0]

sup
r002W

|f(t,r00)�f(t,r00)|= kf �fk

Hence we obtain
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kG(f)(r)�G(f)(r)k  |W | sup
W⇥W

J sup
R

S0 kf �fk 8r 2 W

where the suprema are finite due to (HJ) and (HS).

4.2.2 Dual semigroups and DDE

In this subsection we provide a very brief introduction to sun-star duality and its conse-
quences for the analysis of (NF). For a more complete treatment we refer to [41] and,
regarding the analysis of abstract DDE, the forthcoming paper [117].

In this subsection Y will be a Banach space and X :=C([�h,0];Y ). In conjunction with
(NF) we will assume that Y =C(W). From an abstract point of view, solving a delay equa-
tion amounts to obtaining the future state of the system, say at time t > 0, from knowledge
of the present state. This is done in two steps. First, the present state (a continuous func-
tion on the time segment [�h,0]) is extended to the interval [�h, t]. Next the part of this
extension living on [t � h, t] is shifted back to [�h,0]. Dual perturbation theory provides
a systematic method to embed X into a bigger Banach space, the so-called sun-star dual
X�?, in which the extension and shifting operations are neatly separated. In broad lines,
this works as follows.

If the extension problem is trivial, i.e. if F ⌘ 0 in (DDE), then the solution semigroup
corresponding to (DDE) is the shift semigroup T0, defined as

(T0(t)f)(q) =

8

<

:

f(t +q) �h  t +q  0

f(0) 0  t +q

8f 2 X , t � 0, q 2 [�h,0] (4.7)

Let A0 be its infinitesimal generator. We represent X⇤ by the space NBV([0,h];Y ⇤) of
functions h : [0,h]!Y ⇤ of bounded variation, normalised such that h(0) = 0 and h(t+)=

h(t) for all t 2 (0,h). Elements of X and X⇤ are in duality via an abstract bilinear Riemann-
Stieltjes integral. Since X is not reflexive, the adjoint semigroup T ⇤

0 may not be strongly
continuous on X⇤. Let X� ⇢ X⇤ be the maximal subspace of strong continuity of T ⇤

0 . It is
easy to see that X� is positively T ⇤

0 -invariant and, moreover,

X� = D(A⇤
0) (4.8)

where A⇤
0 is the adjoint of A0. Let T�

0 be the strongly continuous semigroup on X� obtained
by restriction of T ⇤

0 to X�. Its infinitesimal generator A�
0 is precisely the part of A⇤

0 in X�,

D(A�
0 ) = {f

� 2 D(A⇤
0) : A⇤

0f

� 2 X�}, A�
0 f

� = A⇤
0f

�
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In [56, Thm. 2.2] it is shown that X� may be identified with Y ⇤ ⇥L1([0,h];Y ⇤) where the
second factor is the space of Bochner integrable Y ⇤-valued functions on [0,h].

Performing this construction once more, but now starting from the strongly continu-
ous semigroup T�

0 (t) on the Banach space X�, we obtain the adjoint semigroup T�?
0 on

the dual space X�? and its strongly continuous restriction T��
0 to the positively invari-

ant subspace X�� = D(A�?
0 ). The infinitesimal generator of T��

0 is again given by the
part of A�?

0 in X��. Following [5, §1.2] we suppose that it is not possible to represent
X�? = Y ⇤⇤ ⇥ [L1([0,h];Y ⇤)]⇤ in terms of known functions or measures, since Y ⇤⇤ does not
have the Radon-Nikodym property. However, the subspace X�� of strong continuity may
be identified with C([�h,0],Y ⇤⇤), see [56, Thm. 3.11]. Of course this representation is
only semi-explicit, since a representation for Y ⇤⇤ itself is unknown. The original space X
is canonically embedded into X�? via j : X ! X�? given by2

hf�, jfi := hf ,f�i 8f 2 X , 8f

� 2 X� (4.9)

Since Y is not reflexive, it follows that the range of j must be a proper subspace of X��.
This fact is expressed by saying that X is not sun-reflexive with respect to the shift semi-
group T0, a situation that contrasts the classical case Y = Rn.

We proceed to explain how (DDE), and consequently (NF), fits into the above abstract
context. Define d 2 L (X�,Y ⇤) as

df

� := y⇤ 8f

� = (y⇤,g) 2 X� (4.10)

Then d

⇤ 2 L (Y ⇤⇤,X�?). Let ` 2 L (Y,X�?) be the restriction of d

⇤ to Y , viewed as a
subspace of Y ⇤⇤. Explicitly,

hy,df

�i = hf�,`yi 8y 2 Y, 8f

� 2 X� (4.11)

Define R : X ! X�? by R := ` �F with F as in (DDE). The following lemma will prove
to be useful in §4.4.4. Observe that each (y, f ) 2 Y ⇥L•([�h,0];Y ) defines an element of
X�?. Hence we may identify Y ⇥L•([�h,0];Y ) with a subspace of X�?.

Lemma 4.4. R(f) = (F(f),0) for all f 2 X. Hence R maps into Y ⇥{0}.

Proof. Let f 2 X and write R(f) = (y⇤⇤,w⇤) 2 X�? for certain y⇤⇤ 2 Y ⇤⇤ and w⇤ 2
[L1([0,h];Y ⇤)]⇤. Then, for any f

� = (y⇤,g) 2 X�,

hf�,R(f)i = hy⇤,y⇤⇤i+ hg,w⇤i (4.12)

On the other hand, from the definition of R we obtain

2 In this paper we adopt the ‘postfix notation’ for the action of a functional on a vector. That is, if W is a
Banach space with dual space W ⇤, w 2W and w⇤ 2W ⇤, then hw,w⇤i := w⇤(w).
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hf�,R(f)i = hf�,`F(f)i = hF(f),df

�i = hF(f),y⇤i (4.13)

where in the second equality we used (4.11) and the third equality is due to (4.10). By
comparing (4.12) and (4.13) we see that y⇤⇤ acts on y⇤ by point evaluation in F(f) 2 Y
and w⇤ = 0. Hence R(f) = (F(f),0) and consequently R maps into Y ⇥{0}.

Remark 4.5. In the ‘classical’ case where Y = Rn, the previous lemma shows that R is a
(possibly non-linear) operator of finite rank that takes values in the ‘point component’ Y
only, see [41, §§III.3 and VII.6]. In the present setting with dimY = • we lose the former,
but retain the latter property. ⌃

We now consider the so-called abstract integral equation of the form

u(t) = T0(t)f + j�1
⇣

Z t

0
T�?

0 (t � s)R(u(s))ds
⌘

8 t � 0 (AIE)

where f 2 X is an initial condition, u 2 C([0,•);X) is the unknown and the convolution
integral is of weak⇤ Riemann type, see [41, §III.1] and also [41, Interlude 3.13 in Appendix
II]. In [117] it is shown that this convolution integral takes values in the range of j. Conse-
quently, the right-hand side of (AIE) is well-defined. The connection between (DDE) and
(AIE) is revealed in the following theorem.

Theorem 4.6 (Equivalence of (DDE) and (AIE)). Let f 2 X be given and let R = ` �F
with F 2C(X ,Y ). The following two statements hold.

(i) Suppose that u 2 C([0,•);X) satisfies (AIE). Define x : [�h,•) ! Y by x0 := f

and x(t) = u(t)(0) for t � 0. Then x is a global solution of (DDE) in the sense of
Definition 4.2.

(ii) Conversely, suppose that x is a global solution of (DDE). Define u : [0,•)! X by
u(t) := xt . Then u 2C([0,•);X) and u satisfies (AIE).

It is routine to show that (AIE) admits unique global solutions on [0,•) if F is globally
Lipschitz continuous. Thus, by Lemma 4.3 and Theorem 4.6 we find

Corollary 4.7. For any f 2 X problem (NF) has a unique global solution.

Of course, establishing well-posedness for (NF) does not require sun-star duality. Yet, it
turns out that (AIE) is a very convenient tool in proving many standard results of dy-
namical systems for abstract DDE, such as the principle of linearised (in)stability, the
existence of stable, unstable, and center manifolds, and theorems on local bifurcation. The
following linearisation theorem is a direct generalisation of the corresponding result in the
sun-reflexive case, see [41, §VII.5] or [26].

Theorem 4.8 (Linearisation at a steady state). Let F 2 C1(X ,Y ) and R = ` �F and let
S be the strongly continuous non-linear semiflow on X associated with (AIE). Let f̂ 2 X
be a steady state of S , i.e. S(t)(f̂) = f̂ for all t � 0. The following statements are true.
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(i) For each t � 0 the operator S(t) : X ! X is continuously Fréchet differentiable in
f̂ with derivative DS(t)(f̂) 2 L (X).

(ii) Upon defining T (t) := DS(t)(f̂) for each t � 0 one obtains a strongly continuous
semigroup in L (X). The domain of its generator A is given by

D(A) = {f 2 X : f

0 2 X and f

0(0) = DF(f̂)f}, Af = f

0 (4.14)

(iii) For every f 2 X the function T (·)f 2C([0,•),X) is the unique global solution of
the linear abstract integral equation

T (t)f = T0(t)f + j�1
⇣

Z t

0
T�?

0 (t � s)`DF(f̂)T (s)f ds
⌘

We observe that the above theorem produces a new strongly continuous semigroup T on
X with generator A. For this semigroup we may likewise calculate the sun-star duality
structure, just as we did for the shift semigroup T0 defined by (4.7). It turns out that the
spaces X� and, consequently, X�? are the same for both semigroups. Indeed, if we put
B := `�DF(f̂) 2 L (X ,X�?) and slightly abuse notation by writing B⇤ 2 L (X�,X⇤) for
the restriction of the adjoint of B to X�, then just as in the sun-reflexive case [41, §III.2]
one proves that the adjoint of the generator A of T is given by

D(A⇤) = D(A⇤
0), A⇤ = A⇤

0 +B⇤

By (4.8) the sun-duals of X with respect to T0 and T are identical and may both be denoted
by X�. Moreover,

D(A�) = {f

� 2 D(A⇤) : A⇤
f

� 2 X�}, A� = A⇤ (4.15)

Let A�? : D(A�?) ✓ X�? ! X�? be its adjoint. For A�? the situation is slightly more
difficult than in the sun-reflexive case, because D(A�?

0 ) 6✓ j(X). (Indeed, if it were true
that D(A�?

0 ) ✓ j(X), then it would follow that X�� = D(A�?
0 ) ✓ j(X) and X would be

sun-reflexive with respect to T0, also see [41, §III.8].) The next lemma is sufficient for our
purposes in §4.4.4.

Lemma 4.9. If f 2C1([�h,0];Y ) then jf 2 D(A�?) and A�? jf = (0,f 0)+(DF(f̂)f ,0).

4.2.3 Differentiability results

The following two results concern the smoothness of the operator G defined by (4.3) and
appearing in the right-hand side of (NF). When k = 1,2, . . . we denote by Lk(X ,Y ) the
space of bounded k-linear operators from X to Y . When k = 1 we write L (X ,Y ) instead
of L1(X ,Y ). For a review of differentiation in Banach spaces, we recommend [4, Ch. 9].
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Lemma 4.10. The operator G : X ! Y defined by (4.3) is Fréchet differentiable with
derivative DG(f) 2 L (X ,Y ) in the point f 2 X given by

(DG(f)y)(r) =
Z

W

J(r,r0)S0(f(�t(r,r0),r0))y(�t(r,r0),r0))dr0 (4.16)

for all y 2 X and all r 2 W .

Proof. First we consider the operator DG(f) defined by the right-hand side of (4.16).
Using standard methods as in the proof of Lemma 4.1 one shows that DG(f)y 2Y for all
y 2 X . These steps are omitted. As in the proof of Lemma 4.3 we begin by noting that if
r,r0 2 W then

|y(�t(r,r0),r0)| sup
r002W

|y(�t(r,r0),r00)| sup
t2[�h,0]

sup
r002W

|y(t,r00)|= kyk (4.17)

This implies that k(DG(f)y)k  Mkyk where M > 0 is a constant depending on W , J
and S. Hence DG(f) 2 L (X ,Y ).

Next we verify that DG(f) is indeed the Fréchet derivative of G at f . Introduce the
shorthand notation f

t(r,r0) := f(�t(r,r0),r0). For h 2 X and r 2 W ,

G(f +h)(r)�G(f)(r)� [DG(f)h ](r)

=
Z

W

J(r,r0)
⇥

S(f t(r,r0)+h

t(r,r0))�S(f t(r,r0))�S0(f t(r,r0))ht(r,r0)
⇤

dr0

Consider the integrand for fixed r0. It follows from the Mean Value Theorem that there
exists c = c(f ,h ,r,r0) 2 (0,1) such that

S(f t(r,r0)+h

t(r,r0))�S(f t(r,r0)) = h

t(r,r0)S0(f t(r,r0)+ ch

t(r,r0))

Consequently,

S(f t(r,r0)+h

t(r,r0))�S(f t(r,r0))�S0(f t(r,r0))ht(r,r0)

=
⇥

S0(f t(r,r0)+ ch

t(r,r0))�S0(f t(r,r0))
⇤

h

t(r,r0)

Since S0 is uniformly continuous on compact intervals and |f t(r,r0)|kfk and |ht(r,r0)|
khk for all r,r0 2 W , it follows that for every e > 0 there exists d > 0 such that

|S0(f t(r,r0)+ ch

t(r,r0))�S0(f t(r,r0))| e 8r,r0 2 W

provided khk  d . Therefore, if khk  d then

kG(f +h)�G(f)�DG(f)hk  Mekhk

where M > 0 depends on W and J. This establishes differentiability.
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Proposition 4.11. The operator G defined by (4.3) is in C•(X ,Y ). For k = 1,2, . . . its kth
Fréchet derivative DkG(f) 2 Lk(X ,Y ) in the point f 2 X is given by

(DkG(f)(y1, . . . ,yk))(r) =
Z

W

J(r,r0)S(k)(f(�t(r,r0),r0))
k

’
i=1

yi(�t(r,r0),r0)dr0

for y1, . . . ,yk 2 X and r 2 W .

Proof. For k = 1 the statement reduces to Lemma 4.10. Fix k � 2. We need to check
that Dk�1G : X ! Lk�1(X ,Y ) has Fréchet derivative DkG(f) 2 Lk(X ,Y ) in the point
f 2 X . Again we remark that DkG(f)(y1, . . . ,yk) 2Y but we omit the proof. We begin by
observing that DkG(f) 2 Lk(X ,Y ). Indeed, by (4.17) we have

kDkG(f)(y1, . . . ,yk)k  Mky1k · . . . ·kykk

for all y1, . . . ,yk 2 X , where M > 0 is a constant depending on W , J and S.
We conclude by verifying that DkG(f) is indeed the derivative of Dk�1G at f 2 X .

Using the same shorthand notation as in the proof of Lemma 4.10, we consider, for h 2 X ,
y = (y1, . . . ,yk�1) 2 Xk�1 with kyik  1 for all i = 1, . . . ,k�1 and r 2 W ,

(Dk�1G(f +h)y)(r)� (Dk�1G(f)y)(r)� (DkG(f)(h ,y))(r)

=
Z

W

J(r,r0)R(r,r0)
k�1

’
i=1

y

t

i (r,r0)dr0

where

R(r,r0) := S(k�1)(f t(r,r0)+h

t(r,r0))�S(k�1)(f t(r,r0))�S(k)(f t(r,r0))ht(r,r0)

Exactly as in the proof of Lemma 4.10 we may use the Mean Value Theorem and uniform
continuity of S(k) on compact intervals to conclude that for each e > 0 there exists d > 0
such that khk  d implies |R(r,r0)| ekhk for all r,r0 2 W . Hence we have

kDk�1G(f +h)y �Dk�1G(f)y �DkG(f)(h ,y)k  Mekhk

provided khk  d , where M > 0 depends on W and J.

4.2.4 Choosing the spatial state space

We believe that our choice for Y = C(W) made in §4.2.1 deserves some comments. In
[50, 121] the authors instead elect to work with the Hilbert space Y = L2(W). In our
opinion this choice suffers from at least three mathematical complications.
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The definition of G

It is no longer clear that G is well-defined by (4.3). Namely, apart from square integrability
one also needs to verify the following. If f ,f 2 X and for all t 2 [�h,0] one has

f(t,r0) = f(t,r0) a.e. r0 2 W (4.18)

(where a.e. stand for almost everywhere, i.e. f(t, ·) and f(t, ·) represent the same element
in L2(W)) then this should imply that for almost all r 2 W one has

f(�t(r,r0),r0) = f(�t(r,r0),r0) a.e. r0 2 W (4.19)

There are bounded t 2 C(W ⇥W) for which this implication fails. For example, let W =

(0,1), write x = r and r = r0 and let y and y be representatives of the same element in
L2(R) that differ in zero. If we define

f(t,r) := y(r+ t), f(t,r) := y(r+ t) 8r 2 W

then f ,f 2 X and (4.18) holds for all t 2 [�1,0]. However, if t(x,r) = r, independent
of x 2 W , then f(�t(x,r),r) = y(0) and f(�t(x,r),r) = y(0) which shows that for all
x = r 2 W we have inequality in (4.19). Clearly, this choice of t is very unrealistic, but
it does indicate a problem that needs to be addressed when one works with spaces of
equivalence classes of measurable functions. It is not obvious that a more realistic choice
such as t(x,r) := |x� r| does not exhibit the above phenomenon.

First order Fréchet differentiability

Even if we assume that the above problem can be solved satisfactorily by imposing addi-
tional (physiologically plausible) conditions on t , there remains the question of whether
the first order Fréchet derivative of G appearing in Lemma 4.10 maps X into Y when
Y = L2(W). For the sake of simplicity, let us assume that J(r,r0)⌘ 1 and f ⌘ 0. Then the
mapping

W 3 r 7!
Z

W

y(�t(r,r0),r0)dr0 2 R (4.20)

should be in L2(W) for all y 2 X . This is not obvious. An attempt to prove this statement
is contained in the proof following [50, Lemma 3.1.1]. The authors write, for r 2 W ,

✓

Z

W

y(�t(r,r0),r0)dr0
◆2


Z

W

y

2(�t(r,r0),r0)dr0  sup
t2[�h,0]

Z

W

y

2(t,r0)dr0
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The first estimate is by the Cauchy-Schwarz inequality. As it stands, the second estimate
only seems to be valid under certain extra conditions on y and / or t , since t depends on
the integration variable.

Higher order Fréchet differentiability

In verifying second order differentiability we encounter problems similar to those pointed
out above. Another complication appears in conjunction with derivatives of order three
and higher. For instance, consider k = 3 in Proposition 4.11. Let W = (0,1) and write x
and y for r and r0. Define y 2 X by y(t,r) := r�

1
3 for all t 2 [�h,0] and r 2 W . Then

clearly y 2 X but the integral
Z

W

y

3(�t(x,r),r)dr

diverges for all x 2 W so D3G(0) does not map X into Y .

Which space to choose instead?

It appears that the choice Y = Lp(W) with 1  p < 1 is not very fortunate. Moreover,
from a biological point of view it is rather unclear why the membrane potentials should be
merely p-integrable on W and not necessarily bounded.

Thus we are led to consider alternatives. Within the class of Hilbert spaces the Sobolev
space Hk(W) comes to mind. By standard Sobolev embedding theory each element of
Hk(W) has a (unique) continuous representative, provided k 2 N is sufficiently large (de-
pending on the dimension of W ). Moreover, Hk(W) is a Banach algebra under mild con-
ditions on W [1, Thm. 5.23]. However, for arbitrary f 2 X the mapping (4.20) cannot be
expected to possess k weak derivatives in L2(W).

Other possibilities are Y = L•(W), Y =B(W) and Y =C(W), where B(W) is the Banach
space of everywhere bounded, measurable functions on W . Note that the first two spaces
differ in the sense that L•(W) consists of equivalence classes of essentially bounded, mea-
surable functions on W . The first choice satisfies all our needs, but it may potentially suffer
from the problem indicated in §4.2.4. The second choice takes care of all the above techni-
cal complications but also introduces new ones. Most notably, the Arzelá-Ascoli theorem,
used in §4.3.1, does not hold in B(W). The choice Y =C(W) seems to be fitting both from
a modelling as well as from a technical perspective.
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4.3 Resolvents and spectra

Let DG(f̂) 2 L (X ,Y ) be the Fréchet derivative of G at the steady state vector f̂ 2 X , i.e.
f̂ is independent of time (but possibly dependent on space) and

�af̂ +G(f̂) = 0 (4.21)

by (NF). Using Lemma 4.10 we obtain

(DG(f̂)f)(r) =
Z

W

J0(r,r0)f(�t(r,r0),r0)dr0 8f 2 X , 8r 2 W (4.22)

where
J0(r,r0) := J(r,r0)S0(f̂(�t(r,r0),r0)) (4.23)

In this section we are interested in the spectral properties of the linear problem
(

V̇ (t) =�aV (t)+DG(f̂)Vt t � 0

V (t) = f(t) t 2 [�h,0]
(4.24)

with a > 0, which is a special case of the problem
(

ẋ(t) =�ax(t)+Lxt t � 0

x(t) = f(t) t 2 [�h,0]
(4.25)

where Y is a complex Banach space, X =C([�h,0];Y ), L 2 L (X ,Y ) and a 2 C.

Remark 4.12. For the spectral analysis of this section it is necessary to work in Banach
spaces over C. So, whenever we discuss the spectral properties of (4.24), we implicitly
assume that the spaces X and Y and the operators acting between them have been com-
plexified. In fact, one should also complexify the sun-star duality structure introduced in
§4.2.2. This task is not entirely trivial and rather tedious. Fortunately it has been carried
out in [41, §III.7]. ⌃

In §4.3.1 we make several standard observations on the structure of the spectrum of the
generator of the strongly continuous semigroup solving (4.25). Familiarity with the basics
of spectral theory and semigroup theory is presumed, for which we recommend [107,
Ch.V] and [45]. We would also like to mention the nice application-inspired paper [6] for
a detailed treatment of abstract linear DDE with bounded right-hand sides, partially in the
context of Hale’s [61] formal duality approach. Some of our statements are similar to those
found in [121, §3.1], but our approach (as well as the choice of state space, see the remarks
in §4.2.4) is sometimes different. For instance, following [41, Def. II.4.22] and [6, §4.1]
we believe that the employment of Browder’s (instead of Kato’s) definition of the essential
spectrum leads to somewhat simpler arguments.
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In §4.3.2 we specialise to (4.24) and choose Y = C(W) and L = DG(f̂). It is shown
how to obtain explicit representations of resolvents and eigenvectors for a particular (but
still rather general) choice of connectivity function J.

4.3.1 Spectral structure

We recall from Theorem 4.8 in §4.2.2 that the strongly continuous semigroup T on X
corresponding to the global solution of (4.25) is generated by A : D(A)⇢ X ! X where

D(A) = {f 2 X : f

0 2 X and f

0(0) =�af(0)+Lf}, Af = f

0 (4.26)

At this point we establish some standard notation. Let S : D(S) ⇢ U ! U be a closed
linear operator on a complex Banach space U . We denote by r(S) ⇢ C, s(A) and sp(A)
the resolvent set, the spectrum and the point spectrum of S, respectively. When z 2 r(S)
we write3 R(z,S) := (z� S)�1 for the resolvent of S at z. For any z 2 C we let R(z� S)
and N (z�S) denote the range and the nullspace of z�S.

The results in this subsection are rather easy consequences of the following generalisa-
tion of [41, Thm. IV.3.1 and Cor. IV.3.3]. It will turn out to be very convenient to employ
tensor product ⌦ notation as introduced in [45, p. 520]. We recall the definition from there
for the reader’s convenience.

Definition 4.13. Let U,V be complex Banach spaces and let F (I,V ) be a complex Banach
space of V -valued functions defined on an interval I ✓R. Let B 2 L (U,V ) and g : I !C.
If the map g⌦v : I 3 s 7! g(s)v 2V is in F (I,V ) for all v 2V , then we define g⌦B : U !
F (I,V ) by

[(g⌦B)u](s) := (g⌦Bu)(s) = g(s)Bu

for all u 2U and s 2 I. ⌃

We also introduce some auxiliary operators. For each z2C and q 2 [�h,0] we set ez(q) :=
ezq . With L as in (4.25) we define

Lz 2 L (Y ), Lz f := L(ez ⌦ f ) (4.27)

Hz 2 L (X), (Hzf)(q) :=
Z 0

q

ez(q�s)
f(s)ds

Sz 2 L (X ,Y ), Szf := f(0)+LHzf

for all f 2 Y , f 2 X and q 2 [�h,0].

Proposition 4.14 ([45, Prop. VI.6.7]). For every z 2 C define D(z) 2 L (Y ) by

3 It is customary to suppress the identity operator and write l �S instead of l I �S.
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D(z) := z+a �Lz (4.28)

Then f 2 R(z�A) if and only if
D(z) f = Szf (4.29)

has a solution f 2 Y and, moreover, z 2 r(A) if and only if f is also unique. If such is the
case, then

R(z,A)f = (ez ⌦D(z)�1)Szf +Hzf (4.30)

Furthermore, Sz is surjective for every z 2 C, so l 2 s(A) if and only if 0 2 s(D(l )).
Finally, y 2 D(A) is an eigenvector corresponding to l if and only if y = e

l

⌦ q where
q 2 Y satisfies D(l )q = 0.

Corollary 4.15. Let z 6=�a . If Lz is compact, then R(z�A) is closed.

Proof. From the part of Proposition 4.14 regarding (4.29) we have f 2 R(z�A) if and
only if Szf 2 R(D(z)). From the theory of compact operators [107, §5.5] it follows that
D(z) = z+a �Lz has closed range, since z+a 6= 0. Now let (fn)n2N be a sequence in
R(z�A) converging to some f 2 X . Then the sequence (Szfn)n2N in R(D(z)) converges
to Szf 2 R(D(z)), since R(D(z)) is closed. Hence f 2 R(z�A).

Remark 4.16. For the particular case (4.24) with Y =C(W) and L = DG(f̂), compactness
of Lz for each z 2C follows easily from the Arzelà-Ascoli theorem since Lz is a Fredholm
integral operator with continuous kernel J0e�zt . ⌃

As dimY = • the shift semigroup T0 on X is no longer eventually compact. Consequently
we need to consider the possibility that s(A) contains points that are not isolated eigen-
values of finite type.

Definition 4.17 ([17, Def. 11]). The Browder essential spectrum sess(S) of a closed and
densely defined operator S : D(S)⇢U !U consists of all l 2 s(S) for which at least one
of the following three conditions holds:

(i) l is an accumulation point of s(S);

(ii) R(l �S) is not closed;

(iii)
S

k�0 N [(l �S)k] has infinite dimension. ⌃

We also recall that if l is in the point spectrum sp(S), then the closure of the subspace
appearing in (iii) is the generalised eigenspace M(l ,S) corresponding to l . Its dimension
m

l

(which may be •) is the algebraic multiplicity of l . If m
l

< • then l is called an
eigenvalue of finite type. If m

l

= 1 then l is called a simple eigenvalue.

Corollary 4.18. Suppose Lz is compact for all z 6=�a . Then sess(A)✓ {�a}. Moreover,
s(A) \ {�a} consists of poles of R(·,A). The order of l as a pole of R(·,A) equals the
order of zero as a pole of R(·,D(l )).
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Proof. Let l 2 s(A) and l 6=�a . Corollary 4.15 implies that (ii) in Definition 4.17 (with
S = A and U = X) cannot be true. Since l +a 6= 0 is in s(L

l

) and L
l

is compact, it
follows (again from general spectral theory, see e.g. [107, §5.8]) that l +a is a pole of
R(·,L

l

), say of order k � 1. If we can prove that l is a pole of order k of R(·,A), then we
are done. Indeed, it then follows that in particular l is isolated in s(A), so (i) in Definition
4.17 cannot hold. By [107, Thm.5.8-A] the same is true for (iii).

Let us therefore prove that l is a pole of order k of R(·,A). First we remark that the map

C 3 z 7! Lz 2 L (Y ) (4.31)

is continuous at l . The proof of this fact is standard and has been omitted. If z is in r(A)
then z+a 2 r(Lz) and

D(z)�1 = (z+a �Lz)
�1 =

⇥

z+a � (L
l

+(Lz �L
l

))
⇤�1

A continuity property of the resolvent [72, Theorem IV.3.15] together with the continuity
of (4.31) at l implies that for z sufficiently close to l we have z+a 2 r(L

l

) and

D(z)�1 = (z+a �L
l

)�1 +o(|l � z|) as z ! l

where o(|l � z|) denotes a term that vanishes as z ! l . By (4.30) we see that for z suffi-
ciently close to l ,

R(z,A) = (ez ⌦ (z+a �L
l

)�1)Sz +Hz +o(|l � z|) (4.32)

where it was used that kSzk remains bounded as z ! l , which can easily been seen from
(4.27) (with l replaced by z). This already establishes that l is an isolated singularity of
R(·,A). To conclude the proof we recall that l +a is a pole of R(·,L

l

) of order k � 1.
Hence l itself is a pole of order k of the mapping

C 3 z 7! (z+a �L
l

)�1 2 L (Y )

The result now follows from (4.32) since C 3 z 7! Hz 2 L (X) is analytic in z = l and the
zero-order term in the power series expansion of C 3 z 7! Sz 2 L (X ,Y ) at z = l does not
vanish, as is easily checked.

Hence, although for the application to (4.24) that we have in mind essential spectrum exists
in the form of the exceptional point �a < 0, it is properly contained in the left half-plane
and therefore rather harmless. This situation seems to be quite common in DDE arising in
population dynamics, see the remark in [6, p. 321]. As a pleasant consequence, most of
the results in [41, §IV.2] have immediate analogues in the present setting. We will limit
ourselves to the statement of two such results that are also important for the application of
center manifold theory in §4.4.
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Lemma 4.19 ([45, Thm. VI.6.6 and Corollary IV.3.11]). The semigroup T generated by
A is norm continuous for t > h. Consequently w0 = s(A), where w0 is the growth bound of
T and s(A) is the spectral bound of A.

The above lemma implies that, for the linear problem (4.24), the (in)stability of the zero
solution may be inferred from the location of the poles of R(·,A) in the complex plane.
More precisely, we have the following result, which is a direct analogue of [41, Thm.
IV.2.9].

Proposition 4.20. Suppose b >�a . Let

L = L(b ) := {l 2 s(A) : Rel > b}

and let P
L

2 L (X) be the spectral projection associated with L , see [107, §5.7]. Then

X = R(P
L

)�R(I �P
L

)

where the first summand is finite dimensional, the second summand is closed and both
summands are positively T -invariant. Moreover, there exist K > 0 and e > 0 such that

kT (t)P
L

k  Ke(b+e)tkP
L

k 8 t  0 (4.33)

kT (t)(I �P
L

)k  Ke(b+e)tkI �P
L

k 8 t � 0

We observe that T (t)P
L

is well-defined in (4.33) for all t  0, since T (t) extends uniquely
to a group on the finite-dimensional range of P

L

.
The extension of the above decomposition and exponential estimates to X�? proceeds

exactly as in [41, p.100 - 101].

4.3.2 Explicit computations

In the remainder of this section we consider a homogeneous neural field with transmission
delays due to a finite propagation speed of action potentials as well as a finite, fixed delay
t0 � 0 caused by synaptic processes. Space and time are each rescaled such that W =

[�1,1] and the propagation speed is 1. This yields

t(x,r) = t0 + |x� r| 8x,r 2 W (4.34)

For the connectivity function we take a linear combination of N � 1 exponentials,

J(x,r) =
N

Â
i=1

ĉie�µi|x�r| 8x,r 2 W (4.35)

where
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ĉi 2 C with ĉi 6= 0, µi 2 C with µi 6= µ j for i 6= j

(As the number N of exponentials remains fixed, we suppress it in our notation.) In addi-
tion to (HS) we also require here that S(0) = 0. We study the stability of a spatially ho-
mogeneous steady state f̂ ⌘ 0 by analysing the spectrum of the linearised system (4.24).
Following (4.23) we incorporate S0(0) into the connectivity function,

J0(x,r) =
N

Â
i=1

cie�µi|x�r|, ci = S0(0)ĉi

In order to avoid overly convoluted notation we henceforth write J instead of J0. Assuming
the form (4.35), in the next two subsections we explicitly compute the point spectrum
sp(A) with A as in (4.26) as well as the resolvent operator R(l ,A) for l 2 r(A).

4.3.3 Characteristic equation

In this example the operator D(l ) introduced in (4.28) is given by

(D(l )q)(x) = (l +a)q(x)�
Z 1

�1
J(x,r)e�lt0e�l |x�r|q(r)dr (4.36)

for all l 2 C, q 2 Y and x 2 W = [�1,1]. We let

ki := l +µi 8 i = 1, . . . ,N (4.37)

and define for each i = 1, . . . ,N the integral operator Ki 2 L (Y ) by

(Kiq)(x) =
Z 1

�1
e�ki|x�r|q(r)dr

and set (Kq)(x) := [(K1q)(x), . . . ,(KNq)(x)] 2 CN . By introducing c := [c1, . . . ,cN ] 2 CN ,
D(l ) is written as

D(l )q = (l +a)elt0q� (c ·Kq), (c ·Kq)(x) := (c ·Kq(x)) (4.38)

where (a · b) := ÂN
i=1 aibi is a pairing of two complex vectors a = [a1, . . . ,an] and b =

[b1, . . . ,bn]. We solve the equation D(l )q = 0 by formulating a linear ODE in terms of q
by repetitive differentiation. For this purpose the next lemma is useful.

Proposition 4.21. All solutions q 2 Y of the equation D(l )q = 0 are in fact in C•(W).

Proof. The range of Ki is contained in C1(W) and therefore any solution of the equation
D(l )q = 0 is an element of C•(W).
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Let q 2 C2(W). The first derivative of D(l )q with respect to the spatial variable contains
terms that involve integration over the intervals [�1,x] and [x,1]. The second derivative
has a nicer structure:

D2
xD(l )q = (l +a)elt0 q(2) +2(c · k)q� (ck2 ·Kq) (4.39)

in which q(2) denotes the second derivative of q and for each m 2N the vectors km and ckm

in CN have elements km
i and cikm

i , respectively, for i = 1, . . . ,N. This identity allows for
straightforward calculation of higher derivatives. For the following lemma we recall the
definition in (4.37).

Lemma 4.22. The set S := {l 2 C : 9i, j 2 {1, . . . ,N}, i 6= j, s.t. k2
i = k2

j} contains at
most 1

2 N(N �1) elements.

Proof. All ki are distinct since (by definition) all µi are distinct. So for i 6= j, k2
i = k2

j )
l =� 1

2 (µi +µ j) 2 S . The number of (unique) elements in this set is at most the number
of unique pairs (i, j), i, j  N, i 6= j, which equals 1

2 N(N �1).

Lemma 4.23. Let l /2 S . Then there exist unique vectors z = [z0, . . . ,zN�1] 2 CN and
b = [b0, . . . ,bN ] 2 CN+1, depending on l and such that for every q 2C2N(W) one has

(z0 +z1D2
x + . . .+zN�1D2N�2

x +D2N
x )D(l )q = (b0 +b1D2

x + . . .+bN�1D2N�2
x +bND2N

x )q

Proof. Let Q := [q,q(2), . . . ,q(2N)]. Repeated differentiation of (4.39) yields the following
system of equations:

2

6

6

6

6

4

D(l )q
D2

xD(l )q
...

D2N
x D(l )q

3

7

7

7

7

5

= MQ�V (4.40)

where

M := elt0(l +a)I +2

2

6

6

6

6

6

6

4

0 0 0 . . . 0
(c · k) 0 0 . . . 0
(c · k3) (c · k) 0 . . . 0

...
. . . . . . . . .

...
(c · k2N�1) . . . (c · k3) (c · k) 0

3

7

7

7

7

7

7

5

| {z }

:=X

T

, V :=

2

6

6

6

6

6

6

4

(c ·Kq)
(ck2 ·Kq)
(ck4 ·Kq)

...
(ck2N ·Kq)

3

7

7

7

7

7

7

5

and I is the identity matrix of size N +1. (Note that (4.40) is an equality that holds on W .
Also, the definition of X

T is not used in the current proof, but will reoccur in Appendix
A.) We take a linear combination of the rows in (4.40) with the components of the vector
Z := [z ,1]2CN+1 such that this combination of the elements of V in (4.40) vanishes. This
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eliminates all integral terms entering (4.40) via Kq. Thus we seek z such that ZTV = 0,
i.e.

h

z 1
i

2

6

6

6

6

6

6

4

1 1 . . . 1
k2

1 k2
2 . . . k2

N
k4

1 k4
2 . . . k4

N
...

...
...

k2N
1 k2N

2 . . . k2N
N

3

7

7

7

7

7

7

5

| {z }

:=Ŵ T

2

6

6

6

6

4

c1K1q
c2K2q

...
cNKNq

3

7

7

7

7

5

= 0 (4.41)

on W . If this equation is to be satisfied for any q, then we must have ŴZ = 0, which is
equivalent to

2

6

6

6

6

4

1 k2
1 k4

1 . . . k2N�2
1

1 k2
2 k4

2 . . . k2N�2
2

...
...

...
...

1 k2
N k4

N . . . k2N�2
N

3

7

7

7

7

5

| {z }

:=W

z =�

2

6

6

6

6

4

k2N
1

k2N
2
...

k2N
N

3

7

7

7

7

5

(4.42)

The N ⇥N Vandermonde matrix W is invertible since all k2
i are distinct by Proposition

4.22. Hence z can be found by applying W�1 to (4.42). To find b we apply the row vector
[z ,1]T from the left to (4.40) to infer that b

T = [z ,1]T M. Hence

b = MT

"

z

1

#

=�MT

"

W�1 ?
? 1

#

2

6

6

6

6

6

6

4

k2N
1

k2N
2
...

k2N
N
�1

3

7

7

7

7

7

7

5

(4.43)

which concludes the proof.

Remark 4.24. For l 2 S the vectors z and b still exist, but they are not unique, as can be
seen from (4.42). For simplicity we do not consider this case here. ⌃

Theorem 4.25. Suppose l 62 S and let {bi}N
i=1 as in Lemma 4.23. Then D(l )q = 0 im-

plies
b0q+b1q(2) + . . .+bN�1q(2N�2) +bNq(2N) = 0 (4.44)

Proof. Since D(l )q = 0 on W it holds that Dm
D(l )q = 0 for all m 2 N. The result now

follows from Lemma 4.23.

Our next objective is to obtain what one could call a converse to the above theorem. Specif-
ically, we ask when for a given l 2 C with l 62 S a solution q of (4.44) also satisfies
D(l )q = 0. For this we start by noting that eigenvalues of the ODE (4.44) are roots of the
characteristic polynomial
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P(r) = bNr

2N +bN�1r

2N�2 + . . .+b1r

2 +b0 (4.45)

Evaluating the coefficients bi of this polynomial by means of (4.43) yields the following
result. Its proof may be found in Appendix A.

Proposition 4.26. For l 62 S the characteristic polynomial P is given by

P(r) =
elt0(l +a)

2

N

’
j=1

(r2 � k j(l )
2)+

N

Â
i=1

ciki(l )
N

’
j=1
j 6=i

(r2 � k j(l )
2) (4.46)

Since P is an even function, it follows that if r 2 C is an eigenvalue of (4.44) then the
same is true for �r .

Proposition 4.27. If (4.46) has 2N distinct roots ±r1(l ), . . . ,±rN(l ) then the general
solution of (4.44) is of the form

q
l

(x) =
N

Â
i=1

⇥

gieri(l )x + g�ie�ri(l )x
⇤

8x 2 W (4.47)

where the coefficients g±i 2 C are arbitrary.

For (4.47) to satisfy D(l )q
l

= 0, from (4.38) we see that

0 = (D(l )q)(x) = elt0(l +a)
N

Â
i=1

⇥

gierix + g�ie�rix
⇤

�
N

Â
j=1

c j

N

Â
i=1

h

gi

Z 1

�1
e�k j |x�r|+rir dr+ g�i

Z 1

�1
e�k j |x�r|�rir dr

i

(4.48)

must hold for all x 2 W . For notational convenience we have suppressed the dependence
on l of q, ri and k. Recalling that W = [�1,x][ [x,1] for each fixed x 2 W , we split the
domains of integration accordingly. If

k j(l ) 6=±ri(l ) 8 i, j = 1,2, . . . ,N (4.49)

then (4.48) becomes

0 = elt0(l +a)
N

Â
i=1

⇥

gierix + g�ie�rix
⇤

�
N

Â
j=1

c j

N

Â
i=1

gi

h 2k j

k2
j �r

2
i

erix � e�(k j�ri)

k j �ri
ek jx � e�(k j+ri)

k j +ri
e�k jx

i

+
N

Â
j=1

c j

N

Â
i=1

g�i

h 2k j

k2
j �r

2
i

e�rix � e�(k j+ri)

k j +ri
ek jx � e�(k j�ri)

k j �ri
e�k jx

i

Sorting the terms according to their exponents in x while again suppressing dependence
on l of ri and k yields
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0 =
N

Â
i=1

n

gierix
h

elt0 (l +a)�
N

Â
j=1

2c jk j

k2
j �r

2
i

i

+ g�ie�rix
h

elt0 (l +a)�
N

Â
j=1

2c jk j

k2
j �r

2
i

io

+
N

Â
j=1

c je�k j
n

ek jx
h N

Â
i=1

gi
eri

k j �ri
+

n

Â
i=1

g�i
e�ri

k j +ri

i

+ e�k jx
h N

Â
i=1

gi
e�ri

k j +ri
+

n

Â
i=1

g�i
eri

k j �ri

io

Proposition 4.26 guarantees that all coefficients of e±ri(l )x vanish. As for the remaining
terms, all coefficients of e±k j(l )x should vanish as well. Thus we must have

N

Â
j=1

c je�k j ek jx
h N

Â
i=1

gi
eri

k j �ri
+

n

Â
i=1

g�i
e�ri

k j +ri

i

= 0

N

Â
j=1

c je�k j e�k jx
h N

Â
i=1

gi
e�ri

k j +ri
+

n

Â
i=1

g�i
eri

k j �ri

i

= 0

where dependence on l of ri and k was suppressed. This yields a set of 2N linear equa-
tions: one for each e±k j(l )x. With G = [g1,g2, . . . ,gN ,g�1,g�2, . . . ,g�N ] and the matrix S(l )
defined by

S(l ) :=

"

S�
l

S+
l

S+
l

S�
l

#

(4.50)

where

[S�
l

] j,i :=
eri(l )

l +µ j �ri(l )
, [S+

l

] j,i :=
e�ri(l )

l +µ j +ri(l )

we seek G such that
S(l )G = 0 (4.51)

In order for this system to have a non-trivial solution G =G

l

, it is necessary (and sufficient)
for the determinant of S(l ) to vanish,

detS(l ) = 0 (4.52)

This result is summarised in the following theorem.

Theorem 4.28. Suppose that l 62 S and assume that the characteristic polynomial P in
(4.46) has 2N distinct roots, denoted by ±ri(l ) for i = 1,2, . . . ,N. If l satisfies (4.52)
and (4.49) then l 2 sp(A). The corresponding eigenfunction is e

l

⌦q
l

, with q
l

given by
(4.47) with G

l

a solution of (4.51).

Remark 4.29. Two comments on the above Theorem seem in order.

(i) The above procedure can easily be adapted to cover the degenerate cases excluded
in Theorem 4.28. All we need is to adjust the form of q

l

in Proposition 4.27. We do
not pursue this for reasons of clarity and readability. Rather, in specific instances we
check that degeneracy is not an issue.

(ii) We expect that that the order of l as a root of (4.52) equals the multiplicity of l as
a pole of R(·,A), see Corollary 4.18 in §4.3.1. This would give an explicit way to
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verify simplicity of critical eigenvalues in §4.4. We intend to comment on this issue
in future work. ⌃

4.3.4 Resolvent

Now that we are able to reduce determining the point spectrum, in this specific example
and modulo a technical restriction, to a finite dimensional matrix problem, the next step is
to determine the solution of the resolvent problem,

(z�A)y = f (4.53)

i.e. to find a representation of y 2 X in terms of the given function f 2 X when z 2 r(A).
For this task we see from Proposition 4.14 in §4.3.1 that we first need to solve

D(z)y(0) = Szf (4.54)

For our specific example the above is equivalent to an integral equation for q := y(0),

(z+a)q(x)�
Z 1

�1
J(x,r)e�zt0�z|x�r|q(r)dr = hz(x) 8x 2 W (4.55)

where

hz(x) := f(0,x)+
Z 1

�1

Z 0

�t0�|x�r|
J(x,r)e�z(t0+s)�z|x�r|

f(s,r)dsdr (4.56)

for all x 2 W . Inspired by (4.47) we propose the following variation-of-constants Ansatz
for its solution

q(x) = g(x)+
N

Â
i=1

⇥

gi(x)erix + g�i(x)e�rix
⇤

8x 2 W

where r±i(z) are distinct roots of (4.45). We seek g 2 C(W) and g±1, . . . ,g±N 2 C1(W).
Substitution into (4.55) and suppressing dependence on z of h, ri and k yields

ezt0 h(x) =ezt0 (z+a)g(x)+ ezt0 (z+a)
N

Â
i=1

⇥

gi(x)erix + g�i(x)e�rix
⇤

�
N

Â
j=1

c jek jx
n

Z 1

x
e�k jrg(r)dr+

N

Â
i=1

Z 1

x

⇥

gi(r)e(�k j+ri)r + g�i(r)e(�k j�ri)r
⇤

dr
o

�
N

Â
j=1

c je�k jx
n

Z x

�1
ek jrg(r)dr+

N

Â
i=1

Z x

�1

⇥

gi(r)e(k j+ri)r + g�i(r)e(k j�ri)r
⇤

dr
o

If (4.49) holds, we may integrate by parts and rearrange the terms,
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ezt0 h(x) =ezt0 (z+a)g(x)+ ezt0 (z+a)
N

Â
i=1

⇥

gi(x)erix + g�i(x)e�rix
⇤

�
N

Â
i, j=1

c j

h erix

k j +ri
gi(x)+

e�rix

k j �ri
g�i(x)+

erix

k j �ri
gi(x)+

e�rix

k j +ri
g�i(x)

i

+
N

Â
j=1

c jek jx
n N

Â
i=1

h e�k j+ri
gi(1)

k j �ri
+

e�k j�ri
g�i(1)

k j +ri

i

�
Z 1

x
e�k jr

h

g(r)+
N

Â
i=1

erir

k j �ri
g

0
i (r)+

e�rir

k j +ri
g

0
�i(r)

i

dr
o

+
N

Â
j=1

c je�k jx
n N

Â
i=1

h e�k j�ri
gi(�1)

k j +ri
+

e�k j+ri
g�i(�1)

k j �ri

i

+
Z x

�1
ek jr

h

�g(r)+
N

Â
i=1

erir

k j +ri
g

0
i (r)+

e�rir

k j �ri
g

0
�i(r)

i

dr
o

(4.57)

where again dependency of h, ri and k on z was suppressed. When z 62 S , Proposition
4.26 is applied and all terms involving e±ri(z)x drop out. We can choose g = gz as

gz(x) :=
hz(x)
z+a

8x 2 W

provided we can achieve that the remaining terms (i.e. the last four lines) of (4.57) vanish.
So for j = 1,2, . . . ,N it should hold that for every x 2 W ,

Z 1

x
e�k jr

n

g(r)+
N

Â
i=1

h erir

k j �ri
g

0
i (r)+

e�rir

k j +ri
g

0
�i(r)

io

dr� e�k j
N

Â
i=1

h eri
gi(1)

k j �ri
+

e�ri
g�i(1)

k j +ri

i

= 0

Z x

�1
ek jr

n

�g(r)+
N

Â
i=1

h erir

k j +ri
g

0
i (r)+

e�rir

k j �ri
g

0
�i(r)

io

dr+ e�k j
N

Â
i=1

h e�ri
gi(�1)

k j +ri
+

eri
g�i(�1)

k j �ri

i

= 0

(4.58)

with the same notational convention as before. We seek functions g±i such that the inte-
grands and the remaining terms in (4.58) vanish. This yields the system

"

T�
z T+

z

T+
z T�

z

#

| {z }

:=T (z)

"

P+
z (x) ?
? P�

z (x)

#

G

0(x) =
hz(x)
z+a

"

�1
1

#

8x 2 W

where 1 2 RN is the vector with one on each entry,

[T±
z ] j,i :=

1
k j(z)±ri(z)

, P±
z (x) := diagN

⇥

e±r1(z)x, . . . ,e±rN(z)x
⇤

(4.59)

and
G = [g1, . . . ,gN ,g�1, . . . ,g�N ]

If the matrix T (z) is invertible, we find G = Gz by matrix inversion and integration,
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Gz(x) = G0,z +
Z x

x0

hz(r)
z+a

"

P�
z (r) ?
? P+

z (r)

#

T (z)�1

"

�1
1

#

dr

| {z }

:=Ĝz(x)

(4.60)

for some initial reference point x0 in W and integration constants G0,z 2 C2N . Any choice
of integration constants results in a choince for Gz for which the integral terms in (4.58)
vanish. In order to satisfy the remaining terms in (4.58), G0,z is chosen as

G0,z =�S(z)�1

"

S�z S+z 0 0
0 0 S+z S�z

#"

Ĝz(1)
Ĝz(�1)

#

(4.61)

for S(z), S+z , and S�z as in (4.50). Clearly, S(z)�1 exists if and only if detS(z) 6= 0, which is
consistent with the fact that the resolvent operator R(z,A) is not defined when z 2 sp(A).
We are now ready to formulate the key result of this section.

Theorem 4.30. Suppose that z 2 r(A) and

• z 62 S ;
• the characteristic polynomial P has 2N distinct roots;
• condition (4.49) holds and;
• the matrix T (z) is invertible.

Then the solution of (4.53) is given by yz = ez ⌦qz +Hzf with

qz(x) =
hz(x)
z+a

+
N

Â
i=1

⇥

gi,z(x)eri(z)x + g�i,z(x)e�ri(z)x
⇤

8x 2 W (4.62)

with Gz given by (4.60) and hz is as in (4.56).

Remark 4.31. The fourth condition in the above Theorem seems peculiar and of a different
nature than the first three, which already occured as simplifying conditions in §4.3.3. We
refrain from investigating this issue here. Wherever we need the result of this theorem, we
check the fourth condition explicitly. ⌃

4.4 Normal forms for local bifurcations

Let f̂ 2 X be a stationary point of the semiflow generated by (DDE). By Theorem 4.8 in
§4.2.2 the linearisation of this semiflow at f̂ defines a strongly continuous semigroup T
of bounded linear operators on X , generated by A as in (4.14) and (4.26). If F is as in
(4.6) then T will be the solution semigroup of the linear problem (4.24), which is of the
form (4.25). In the present section we prepare for the computation of a critical normal
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form when f̂ undergoes a Hopf or a double Hopf bifurcation. The actual computation is
performed in §4.5.

In §4.2.2 we alluded to the fact that a reformulation of equations of type (DDE), such as
(NF), as an abstract integral equation of type (AIE) allows for a relatively straightforward
application of basic dynamical results such as the center manifold theorem. Indeed, by
(AIE) and the exponential estimates of Proposition 4.20 in §4.3.1 the general center mani-
fold theory for AIE presented in [41, Ch. IX] is directly applicable to (DDE) in the setting
of §4.2.2. We shall relegate a more detailed technical presentation to the forthcoming paper
[117].

There exists an efficient approach based on Fredholm’s solvability condition towards
the derivation of explicit formulas for critical normal form coefficients of local bifurca-
tions of dynamical systems. Once such formulas have been derived for a certain class of
dynamical systems, they may be evaluated for specific equations using spectral informa-
tion from the linearisation at the critical equilibrium or fixed point, together with infor-
mation on the higher order derivatives of the particular non-linearity. The technique goes
back to [33] and has been successfully applied to ordinary differential equations [73], [74,
§8.7]) and iterated maps [88], [76], [54]. The resulting formulas have been implemented
in the software packages CONTENT [75], its successor MATCONT [36] and CL_MATCONT
for maps.

In the forthcoming paper [70] the method is applied to AIE and DDE. Here we briefly
summarise the results related to Hopf and double Hopf bifurcations, obtained using the
Fredholm solvability technique, see Lemma 4.33 below. In the Hopf case the correspond-
ing formulae have been first obtained in [116, 41] using a different method. As expected,
the formulae given below look very similar to those given in [73] and [74, §8.7]. However,
one should pay special attention to their proper interpretation in the current functional
analytic context.

4.4.1 Preliminaries

In §§4.4.2 and 4.4.3 we will consider the situation that f̂ 2 X is a stationary point of
the non-linear semiflow generated by (DDE) and the linearised problem takes the form
(4.25) with A as in (4.26) and Lz compact for all z 6=�a . There is no loss of generality in
assuming that f̂ ⌘ 0. Suppose that A has nc � 1 simple eigenvalues on the imaginary axis,
counting multiplicities.

Remark 4.32. One may show that s(A)=s(A⇤)=s(A�)=s(A�?), see [41, p. 100 - 101]
and also [45, Proposition IV.2.18]. We will use this fact in the remainder of this section.
For a detailed discussion of the ‘lifting’ of the spectral properties of A to corresponding
properties of the various (adjoint) generators, we refer to [41, p. 100 - 101]. ⌃
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This implies the existence of a non-trivial center subspace X0 of finite dimension nc and
spanned by some basis F consisting of (generalized) eigenvectors corresponding to the
critical eigenvalues of A. There exists a locally invariant center manifold W c

loc that is tan-
gent to X0 at the origin. One can show that on W c

loc the solution satisfies the abstract ODE

u̇(t) = j�1 �A�? ju(t)+R(u(t))
�

8 t 2 R

where the non-linearity R is given by Lemma 4.4 and is as smooth as the mapping F
appearing in (4.6). Let x (t) be the projection of u(t) onto X0. Then x (t) can be expressed
uniquely relatively to F . The corresponding coordinate vector z(t) of x (t) satisfies some
ODE that is smoothly equivalent to the normal form

ż(t) = Â
1|n |3

g
n

zn(t)+O(|z(t)|4) 8t 2 R (4.63)

with unknown critical normal form coefficients g
n

2 Rnc . Here n stands for a multi-index
of length nc. If F is sufficiently smooth, we may define

B 2 L2(X ,X�?), B(f1,f2)) := D2R(0)(f1,f2) (4.64a)

C 2 L3(X ,X�?), C(f1,f2,f3) := D3R(0)(f1,f2,f3) (4.64b)

for all fi 2 X . The nonlinearity R : X ! X�? may then be expanded as

R(f) =
1
2

B(f ,f)+
1
3!

C(f ,f ,f)+O(kfk4) (4.65)

Let H : V ⇢Rnc !X be a mapping that is as smooth as F and defined on a neighbourhood
V of the origin in the coordinate space Rnc with image H (V ) = W c

loc. Then H admits an
expansion

H (z) = Â
1|n |3

1
n!

h
n

zn +O(|z|4) (4.66)

where n is a multi-index of length nc and h
n

2 X is an unknown coefficient. By the invari-
ance of W c

loc we have
H (z(t)) = u(t) 8 t 2 R

Differentiating both sides with respect to time leads to the homological equation

A�? jH (z)+R(H (z)) = j(DH (z)ż) (4.67)

Substituting the expansions (4.63), (4.65) and (4.66) into (4.67) and equating coefficients
of the corresponding powers of z, one recursively obtains the unknown coefficients h

n

and
g

n

by solving linear operator equations of the form

(l �A�?)f�? = y

�? (4.68)



4.4 Normal forms for local bifurcations 79

where l 2C and y

�? 2 X�? is given. If l 62 s(A) then (4.68) has a unique solution f

�? 2
D(A�?) for any given right-hand side. On the other hand, when l 2 s(A) a solution f

�?

of (4.68) need not exist for all right-hand sides y

�?. The following key lemma provides a
condition for solvability that is useful in this situation.

Lemma 4.33 (Fredholm solvability). Let l 2C\{�a}. Suppose that L
l

2L (Y ) defined
in (4.27) is compact. Then l �A� : D(A�) ⇢ X� ! X� has closed range. In particular,
(4.68) is solvable for f

�? 2 D(A�?) given y

�? 2 X�? if and only if hf�,y�?i = 0 for all
f

� 2 N(l �A⇤).

Proof. From Corollary 4.15 in §4.3.1 we infer that R(l �A⇤) is closed. We first prove
that this implies that R(l �A�) is closed as well. Indeed, let (y�

n )n2N be a sequence in
R(l �A�) such that y

�
n ! y

� 2 X�. Then there is a sequence (f�
n )n2N in D(A�) such

that
y

�
n = (l �A�)f�

n = (l �A⇤)f�
n 8n 2 N

where (4.15) was used in the second equality. Hence y

�
n 2 R(l �A⇤) for all n 2 N, so

there exists f

� 2 D(A⇤) such that (l �A⇤)f� = y

�. Now

A⇤
f

� =�(l �A⇤)f�+lf

� =�y

�+lf

� 2 X�

so f

� 2 D(A�) and (l �A�)f� = y

� by (4.15). Hence y

� 2 R(l �A�).
The second statement in the lemma is obtained from Banach’s Closed Range Theorem

[135, §VII.5] by which it follows that (4.68) has a solution if and only if y

�? annihilates
N(l �A�), i.e. if and only if

hf�,y�?i = 0 8f

� 2 N(l �A�)

To conclude the proof we show that N(l �A�) =N(l �A⇤). Indeed, N(l �A�)✓N(l �
A⇤) by virtue of (4.15). Conversely, suppose that f

� 2 N(l �A⇤). Then f

� 2 D(A⇤) and
A⇤

f

� = lf

� 2 X�. Hence N(l �A�)◆ N(l �A⇤) again by (4.15).

4.4.2 The Andronov-Hopf critical normal form

In this case s(A) contains a simple purely imaginary pair l1,2 =±iw0 with w0 > 0 and no
other eigenvalues on the imaginary axis. Let f and f

� be complex eigenvectors of A and
A⇤ corresponding to l1 = iw0 and satisfying hf ,f�i = 1. The restriction of (DDE) to the
critical center manifold W c

loc is smoothly equivalent to the Poincaré normal form

ż = iw0z+g21z|z|2 +O(|z|4) (4.69)
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where z is complex and the critical normal form coefficient g21 is unknown. Any point
x in the real two-dimensional center subspace X0 corresponding to l1,2 may be uniquely
expressed with respect to the set F = {f ,f} by means of the smooth complex coordinate
mapping

x 7! (z,z), z := hx ,f�i

The homological equation (4.67) presently becomes

A�? jH (z,z)+R(H (z,z)) = j
�

DzH (z,z)ż+DzH (z,z)ż
�

with center manifold expansion

H (z,z) = zf + zf + Â
2 j+k3

1
j!k!

h jkz jzk +O(|z|4)

Note that since the image of H lies in the real space X , it follows that its coefficients
satisfy hk j = h jk. The derivates ż and ż are given by (4.69) and its complex conjugate.

Comparing coefficients of the quadratic terms z2 and zz leads to two non-singular linear
equations for jh20 and jh11 with solutions

jh20 =�(A�?)�1B(f ,f)

jh11 = (2iw0 �A�?)�1B(f ,f)
(4.70)

There are two equations corresponding to the cubic terms z3 and z2z, the first of which is
non-singular. The second one reads

(iw0I �A�?) jh21 =C(f ,f ,f)+B(f ,h20)+2B(f ,h11)�2g21 jf (4.71)

An application of Lemma 4.33 to (4.71) yields

g21 =
1
2
hf�,C(f ,f ,f)+B(f ,h20)+2B(f ,h11)i (4.72)

with h20 and h11 implicitly given by (4.70). The cubic coefficient g21 determines the first
Lyapunov coefficient l1 by the formula

l1 =
1

w0
Reg21

It is well known [74] that in generic unfoldings of (4.69) l1 < 0 implies a supercritical
bifurcation of a limit cycle on the corresponding parameter-dependent locally invariant
manifold, while l1 > 0 implies a subcritical bifurcation of a limit cycle there.

Remark 4.34. Notice that the vector f

� satisfies A⇤
f

� = iw0f

� instead of A⇤
f

� =

�iw0f

� which is used in the finite dimensional case. The reason for this is that the pair-
ing h·, ·i between X� and X�? is complex-linear in both arguments. Also, observe that
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the values of the multilinear form in (4.72) and (4.70) are elements of the dual space X�?

of X�, i.e. they are (bounded) linear functionals. This has been taken into account in the
numerical computations of §4.5. A similar remark is valid for the expressions in §4.4.3. ⌃

4.4.3 The double Hopf critical normal form

In this case s(A) contains two simple purely imaginary pairs

l1,4 =±iw1, l2,3 =±iw2

with w1,2 > 0, and no other eigenvalues on the imaginary axis. Let f1,2 and f

�
1,2 be eigen-

vectors of A and A⇤,

Af1 = iw1f1, Af2 = iw2f2, A⇤
f

�
1 = iw1f

�
1 , A⇤

f

�
2 = iw2f

�
2

As in the finite-dimensional case, it is always possible to scale these vectors such that the
‘bi-orthogonality’ relation

hf j,f
�
i i = di j (1  i, j  2)

is satisfied. In addition, we assume the non-resonance conditions

kw1 6= lw2 for all k, l 2 N with k+ l  5 (4.73)

Then the restriction of (DDE) to the critical center manifold W c
loc is smoothly equivalent

to the Poincaré normal form
8

>

>

>

>

>

<

>

>

>

>

>

:

ż1 = iw1z1 +g2100z1|z1|2 +g1011z1|z2|2 +g3200z1|z1|4 +g2111z1|z1|2|z2|2

+g1022z1|z2|4 +O(k(z1,z1,z2,z2)k6)

ż2 = iw2z2 +g1110z2|z1|2 +g0021z2|z2|2 +g2210z2|z1|4 +g1121z2|z1|2|z2|2

+g0032z2|z2|4 +O(k(z1,z1,z2,z2)k6)

(4.74)

where the constants g jklm are all complex [74, Ch. VIII]. Define
"

p11 p12

p21 p22

#

=

"

g2100 g1011

g1110 g0021

#

and assume that
Re p11Re p12Re p21Re p22 6= 0

As in shown in [74, Ch. VIII] the restriction of (4.74) to W c
loc is locally smoothly orbitally

equivalent to
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8

>

>

>

>

>

<

>

>

>

>

>

:

ż1 = iw1z1 + p11z1|z1|2 + p12z1|z2|2 + ir1z1|z1|4 + s1z1|z2|4

+O(k(z1,z1,z2,z2)k6)

ż2 = iw2z2 + p21z2|z1|2 + p22z2|z2|2 + s2z2|z1|4 + ir2z2|z2|4

+O(k(z1,z1,z2,z2)k6)

(4.75)

Here pi j and si are complex while ri are real, for 1  i, j  2. The real parts of si are given
by

Res1 = Reg1022 +Reg1011 ⇥


Reg1121

Reg1110
�2

Reg0032

Reg0021
� Reg3200Reg0021

Reg2100Reg1110

�

and

Res2 = Reg2210 +Reg1110 ⇥


Reg2111

Reg1011
�2

Reg3200

Reg2100
� Reg2100Reg0032

Reg1011Reg0021

�

The real constants ri are of secondary importance in the bifurcation analysis of a generic
two-parameter unfolding of (4.75) and so we omit expressions for these. They can be
extracted from the proof of [74, Lemma 8.14].

The double Hopf bifurcation is a complicated bifurcation, both from a computational
as well as a conceptual viewpoint. An unfolding of (4.75) is best analysed by rewriting it
in polar coordinates. The sixth-order terms may not be truncated, since they may affect the
qualitative dynamics. Depending on the sign of

Re p11Re p22 = Reg2100Reg0021

this bifurcation exhibits either ‘simple’ or ‘difficult’ dynamics, see [74, §8.6.2]. Assum-
ing generic dependence on parameters, one may encounter invariant tori, chaotic dynam-
ics, Neimark-Sacker bifurcations of cycles and Shilnikov homoclinic orbits. Note that,
although computations up to and including fifth order are required to determine all critical
coefficients, computations up to and including third order suffice to distinguish between
‘simple’ and ’difficult’ cases.

The critical normal form coefficients may be obtained using a procedure similar to the
Hopf case discussed in §4.4.2. We omit the details and only present the results, noting that
the center manifold now has the formal expansion

H (z1,z1,z2,z2) = z1f1 + z1f 1 + z2f2 + z2f 2 + Â
j+k+l+m�2

1
j!k!l!m!

h jklmz j
1zk

1zl
2zm

2

At the second order in the corresponding homological equation, we find
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jh1100 = �(A�?)�1B(f1,f 1)

jh2000 = (2iw1 �A�?)�1B(f1,f1)

jh1010 = [i(w1 +w2)�A�?]�1B(f1,f2)

jh1001 = [i(w1 �w2)�A�?]�1B(f1, f 2)

jh0020 = (2iw2 �A�?)�1B(f2,f2)

jh0011 = �(A�?)�1B(f2,f 2)

All operators in the right-hand side of the above equations are invertible due to the as-
sumptions (4.73) on the critical eigenvalues.

Further, one obtains the following equations for h jklm with j+ k+ l +m = 3:

jh3000 = (3iw1 �A�?)�1[C(f1,f1,f1)+3B(h2000,f1)]

jh2010 = [i(2w1 +w2)�A�?]�1[C(f1,f1,f2)+B(h2000,f2)+2B(h1010,f1)]

jh2001 = [i(2w1 �w2)�A�?]�1[C(f1,f1,f 2)+B(h2000,f 2)+2B(h1001,f1)]

jh1020 = [i(w1 +2w2)�A�?]�1[C(f1,f2,f2)+B(h0020,f1)+2B(h1010,f2)]

jh1002 = [i(w1 �2w2)�A�?]�1[C(f1,f 2,f 2)+B(h0020,f1)+2B(h1001,f 2)]

jh0030 = (3iw2 �A�?)�1[C(f2,f2,f2)+3B(h0020,f2)]

The cubic coefficients in the normal form (4.74) come from the Fredholm solvability con-
ditions and are given by

g2100 =
1
2
hf�

1 ,C(f1,f1,f 1)+B(h2000,f 1)+2B(h1100,f1)i

g1011 = hf�
1 ,C(f1,f2,f 2)+B(h1010,f 2)+B(h1001,f2)+B(h0011,f1)i

g1110 = hf�
2 ,C(f1,f 1,f2)+B(h1100,f2)+B(h1010,f 1)+B(h1001,f1)i

g0021 =
1
2
hf�

2 ,C(f2,f2,f 2)+B(h0020,f 2)+2B(h0011,f2)i

Similarly, one can compute all remaining coefficients in (4.74) by proceeding to orders
four and five. The resulting (lengthy) formulas are omitted. For the finite-dimensional
case these can be found in [73].

4.4.4 Evaluation of normal form coefficients

The computability of the normal form coefficients derived in the previous subsections de-
pends on the possibility to evaluate the dual pairing hf�,f�?i, where f

� 2 X� is some
eigenvector of A⇤ corresponding to a simple eigenvalue l 2 s(A) and f

�? 2 X�?. More-
over, the coefficients h

n

, with n a certain multi-index, can only be computed once a repre-



84 4 On neural fields with transmission delay

sentation for the resolvent R(l ,A�?) is known, where l 2 r(A). At first sight this seems
to be a difficult task, since X� = Y ⇤ ⇥L1([0,h];Y ⇤) and hence

X�? = Y ⇤⇤ ⇥ [L1([0,h];Y ⇤)]⇤

see §4.2.2, and, as remarked there, [L1([0,h];Y ⇤)]⇤ 6= L•([�h,0];Y ⇤⇤). Moreover, a repre-
sentation of the second dual space Y ⇤⇤ is generally unknown, e.g. when Y = C(W) as for
(NF).

Remark 4.35. In §4.5 it will turn out that the second derivative B in (4.64a) vanishes due to
a symmetry in (NF) for the particular modelling functions chosen. In the present subsection
we deliberately do not exploit this information in order to illustrate a general principle. ⌃

In this subsection we offer a way around these complications that works for equations of
the type (DDE). We first deal with the problem of determining R(l ,A�?). From Lemma
4.4 in §4.2.2 it follows that the second and third derivatives defined in (4.64a) and (4.64b),
as well as all derivatives of higher order, map into the closed subspace Y ⇥{0} of X�?. By
inspection of the expressions for the coefficients h

n

in §§4.4.2 and 4.4.3 one sees that it is
sufficient to obtain a representation of the action of R(l ,A�?) on this space.

Lemma 4.36. Suppose that l 2 r(A). For each y 2 Y the function y = e

l

⌦D(l )�1y is
the unique solution in C1([�h,0];Y ) of the system

(

ly(0)�DF(0)y = y

ly �y

0 = 0
(4.76)

Moreover, y

�? = jy is the unique solution in D(A�?) of (l �A�?)y�? = (y,0).

Proof. We return to the setting of Proposition 4.14 in §4.3.1 with L = DG(0). Since l 2
r(A) it follows that D(l )�1 exists. We start by showing that y = e

l

⌦D(l )�1y solves
(4.76). Explicitly,

y(q) = elq

D(l )�1y 8q 2 [�h,0]

so clearly y 2C1([�h,0];Y ) and y satisfies the second equation in (4.76). From (4.6) we
recall that DF(0)y =�ay(0)+DG(0)y . Therefore,

ly(0)�DF(0)y = (l +a)y(0)�DG(0)y

= (l +a)D(l )�1y�DG(0)(e
l

⌦D(l )�1y)

= (l +a)D(l )�1y�L
l

(D(l )�1y)

= D(l )D(l )�1y = y

Lemma 4.9 in §4.2.2 implies that jy 2 D(A�?), where j is the embedding defined in (4.9),
and
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(l �A�?) jy = l

"

y(0)
y

#

�
"

DF(0)y
y

0

#

= (y,0)

But s(A�?) = s(A) so y

�? = jy is the unique solution of (l �A�?)y�? = (y,0). Con-
sequently, y itself is the unique solution in C1([�h,0];Y ) of (4.76).

The above lemma takes care of one of the two problems sketched above. Now suppose
that l 2 s(A) \ {�a} is a simple eigenvalue with eigenvector f 2 D(A). (Note that l is
isolated in s(A) by Corollary 4.18 in §4.3.1.) Let f

� 2 D(A⇤) be a corresponding eigen-
vector of A⇤. Without loss of generality we may assume that hf ,f�i = 1. Let P� and P�?

be the associated spectral projections on X� and X�?, respectively. We set out to evaluate
hf�,f�?i where f

�? = (y,0) 2 Y ⇥ {0} ✓ X�? is given, but f

� is unknown. Since the
range of P�? is spanned by jf we have P�?

f

�? = k jf for a certain k 2 C. In fact, by
(4.9) it follows that

hf�,f�?i = hP�
f

�,f�?i = hf�,P�?
f

�?i = khf�, jfi = k (4.77)

so k is to be determined. This may be done as follows. From the Cauchy integral repre-
sentation [107, §5.8] for P�?

l

we infer that

P�?
f

�? =
1

2pi

I

∂C
l

R(z,A�?)f�? dz = k jf (4.78)

where C
l

is any open disk centered at l such that C
l ,0 ✓ r(A) where C

l ,0 := C
l

\ {l}
and ∂C

l

is its boundary. Since f

�? 2 Y ⇥ {0} the integrand in (4.78) may be calculated
using Lemma 4.36. Specifically, for z 2 ∂C

l

we have

R(z,A�?)f�? = j(ez ⌦D(z)�1y) =

"

D(z)�1y
ez ⌦D(z)�1y

#

Since jf = f(0) we may restrict our attention to the first component to infer that

1
2pi

I

∂C
l

D(z)�1ydz = kf(0) (4.79)

We note that the integral is Y -valued and (4.79) is an identity in Y . The integrand may be
evaluated using the results of §4.3.4. Indeed, for each z 2 ∂C

l

it is necessary to solve a
system of the type (4.54), but with Szf replaced by y.

For this purpose we may apply Theorem 4.30 as follows. Let us assume that l is a root
of the characteristic equation (4.52) on the imaginary axis, l 62S , the roots ±ri(l ) of the
polynomial (4.46) are all distinct and (4.49) holds. Suppose it has also been verified that
the matrix T (l ) is invertible. By choosing the radius of C

l

sufficiently small, we guarantee
that for every z 2C

l

it holds that z 6= �a , z 62 S , the roots ±ri(z) are all distinct, (4.49)
is satisfied (with z instead of l ) and T (z) is invertible. Furthermore, in this way we may



86 4 On neural fields with transmission delay

also ensure that z 2 r(A) for every z 2C
l ,0. In particular, all the maps

C
l

3 z 7!±ri(z) 2 C (i = 1, . . . ,N)

are analytic. By (4.59) and (4.60) (with y in place of hz) this implies that

C
l

3 z 7! Ĝz(x) 2 C2N

is analytic for all x 2 W . Hence by (4.62) (with y instead of hz) we have, for every x 2 W ,

I

∂C
l

[D(z)�1y](x)dz =
I

∂C
l

y(x)
z+a

+
N

Â
i=1

⇥

gi,z(x)eri(z)x + g�i,z(x)e�ri(z)x
⇤

dz

=
N

Â
i=1



eri(l )x
I

∂C
l

[G0,z]i dz+ er�i(l )x
I

∂C
l

[G0,z]�i dz
�

(4.80)

where G0,z is as in (4.61). Since G0,z involves S(z)�1, the maps

C
l

3 z 7! [G0,z]±i 2 C (i = 1, . . . ,N)

cannot be expected to be analytic and (4.80) may not be reduced further.
In summary, (4.80) provides a way to evaluate (4.79) by numerical integration. It suf-

fices to parametrise ∂C
l

and apply a quadrature rule to compute the C-valued contour
integrals

I

∂C
l

[G0,z]±i dz (i = 1, . . . ,N)

which are independent of x 2 W . We then verify that 1
2pi times (4.80) and f(0) are indeed

proportional to each other as functions of x 2 W . The value of hf�,f�?i in (4.77) then
equals the corresponding proportionality constant k .

4.5 Numerical calculations

In §4.3.3 we derived a characteristic equation for problem (4.24) under the assumption
that J is a finite linear combination of exponentials. The main result was formulated in
Theorem 4.28. Subsequently, in §4.3.4 we obtained a closed expression for the associated
resolvent operator. In the present section we apply these findings together with the theory
from §4.4 to a concrete example. For reasons that will become apparent later, we assume
that the connectivity function has a bi-exponential form,

J(x,r) = ĉ1e�µ1|x�r|+ ĉ2e�µ2|x�r| 8x,r 2 W (4.81)

and we choose the activation function S as in [50],
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S(V ) =
1

1+ e�rV � 1
2

8V 2 R

Since S(0) = 0 it follows that (NF) admits the trivial steady state V ⌘ 0 on which we will
focus from now on. Here we have S0(0) = r

4 and hence ci =
r
4 ĉi for i = 1,2.

Let us continue by expressing the characteristic equation for this example and dis-
cussing a naive approach for finding its roots. Thereafter we compare these results with
a more traditional approach which discretises the spatial domain W . Such a discretisation
can be studied using techniques and software that are already available. We conclude with
a normal form analysis of a Hopf bifurcation and a double Hopf bifurcation to illustrate
the potential of the results from §4.4.

4.5.1 Spectral calculations

In order to apply Theorem 4.28, we start by considering the characteristic polynomial P
from (4.46), which presently takes the form

P(r) =
elt0 (l +a)

2
(r2 � (l +µ1)

2)(r2 � (l +µ2)
2)

+ c1(l +µ1)(r
2 � (l +µ2)

2)+ c2(l +µ2)(r
2 � (l +µ1)

2)

This is a second order polynomial in r

2. We apply a Newton algorithm to the mapping
l 7! detS(l ) to find the solutions of the characteristic equation (4.52). At each root l̂ we
need to verify that l̂ 62 S , the numbers ±r1,2(l̂ ) are all distinct and (4.49) is satisfied.
(Note that both of these are open conditions.) Passing this test we may conclude that l̂ is
indeed an eigenvalue.

4.5.2 Discretisation

Derivation [50]

An approximate solution to the neural field equation can be obtained by discretising (NF).
This reduces the state space from C([�h,0];Y ) to C([�h,0];Rm+1) for some m2N. Hence
the theory of ‘classical’ DDE can be applied to analyse the approximate system.

We heuristically derive the discretised system following [50] but we make a few minor
corrections. Consider the original equation (4.1):

∂V
∂ t

(t,x) =�aV (t,x)+
m

Â
i=1

Z xi

xi�1
J(x,r)S(V (t � t(x,r),r))dr
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for some partition �1= x0 < x1 < .. . < xm = 1. We approximate every single integral with
a two-point trapezoid rule evaluated at the end points of the integration interval,

∂V
∂ t

(t,x)⇡�aV (t,x)+
m

Â
i=1

xi � xi�1

2
⇥

J(x,xi�1)S(V (t � t(x,xi�1),xi�1))

+J(x,xi)S(V (t � t(x,xi),xi))
⇤

By writing Vj(t) =V (t,x j), we obtain for j = 0,1, . . . ,m,

dVj

dt
(t) =�aVj(t)+

m

Â
i=1

xi � xi�1

2
⇥

J(x j,xi�1)S(Vi�1(t � t(x j,xi�1)))

+J(x j,xi)S(Vi(t � t(x j,xi)))
⇤

As in (4.34) we take t(x,r) = t0 + |x� r|. Also, with some abuse of notation we write
J(|x� r|) for J(x,r), since the dependence in the right-hand side of (4.81) on x,r is only
via |x� r|. By restriction to an equidistant mesh of size d = xi � xi�1 =

2
m , we obtain

dVj

dt
(t) =�aVj(t)+

2
m

m

Â
i=1

1
2
⇥

J(d |i� j�1|)S(Vi�1(t � t0 �d |i� j�1|))

+J(d |i� j|)S(Vi(t � t0 �d |i� j|))
⇤

Defining

wi =

8

<

:

1
2 if i 2 {0,m}

1 if i 2 {1,2, . . . ,m�1}

enables us to telescope the summation, arriving at

dVj

dt
(t) =�aVj(t)+

2
m

m

Â
i=0

wiJ(d |i� j|)S(Vi(t � t0 �d |i� j|)) (DNF)

for all j = 0,1, . . . ,m. We refer to (DNF) as the discretisation of (NF) or (4.1). Note that
(DNF) indeed is a classical DDE, albeit with many delays, which may be implemented
in MATLAB to perform forward-time simulations using the dde23 scheme. In particular,
the software package DDE-BIFTOOL [46] allows us to determine the spectrum of the
discretised system. At the end of this section we consider two examples in which we use
both our analytic results and these numerical tools to study critical points in neural fields.

Convergence of discretisation

In order to ‘validate’ the above discretisation procedure, we generate discretisations with
different resolutions and compare their spectra with the spectral values obtained by using
the methods from §4.3.3. This is illustrated in Figure 4.1. The black arrows indicate four
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Fig. 4.1 Comparison between spectra of the discretised system for m = 20,50,100 and roots of the char-
acteristic equation. The four black arrows indicate four roots which are not in the spectrum and the grey
arrows point out distinct values which are not found. See text for a more elaborate description of these
points. a = 1,t0 = 1,c1 =�5,c2 = 2,µ1 = 2,µ2 = 0.
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Fig. 4.2 Detail of the accumulation of eigenvalues along the real line near l =�1: |det(S)| is plotted near
the accumulation point and downward peaks correspond to roots of the characteristic equation.
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roots of the characteristic equation which do not satisfy all conditions stated in Theorem
4.28: these points do satisfy (4.52), but also r1(l̂ ) = r2(l̂ ). Therefore they are to be
rejected as eigenvalues. Furthermore, the grey arrows indicate eigenvalues which are not
found using the algorithm of §4.5.1. These eigenvalues all lie in the ‘accumulation region’
near the point �a .

We proceed by studying this accumulation of eigenvalues more closely. For l " �1
along the real axis the absolute value of detS(l ) is plotted in Figure 4.2 on log-log scale.
Every downward peak corresponds to a root of the characteristic equation. For l close to
�a the numerical accuracy drops causing the peaks to be less pronounced. This shows
that, while these are not located by the root finder algorithm, the characteristic equation
does have accumulating roots near the essential spectrum {�a} as is suggested by the
spectrum of the discretisation, cf. Figure 4.1. However, due to both the high frequency
oscillations and numerical errors, the Newton algorithm is unable to locate these roots.

Finally we observe that spectra corresponding to finer meshes converge to the analytic
spectrum. However, it appears that for increasing resolutions DDE-BIFTOOL focuses on
roots near �a instead of eigenvalues located further away. This is clearly seen when m =

100, in which case no spectral values l are found with Rel > �1.2. For that reason we
have chosen m = 50 in the following examples.

4.5.3 Hopf bifurcation

Rhythms and oscillations are important features of nervous tissue that could be studied
with neural field models. For that reason Hopf bifurcations play a key role in the analysis
of neural field equations. In this subsection we study a concrete example of a Hopf bifur-
cation, both analytically and numerically. We also compare the results of both methods.

Initially we focus on a connectivity of the ‘inverted wizard hat’-type. Similarly as in
[50] we consider the steepness parameter r of the activation function as bifurcation param-
eter.

Spectrum

The characteristic equation (4.52) is used to determine the point spectrum for a range
of parameters. For the values shown in Table 4.1 there exists a purely imaginary pair of
simple eigenvalues. The corresponding spectrum is displayed in Figure 4.3. The figure
also shows the spectrum as calculated by DDE-BIFTOOL for a discretisation of m = 50
intervals. From the graph it is obvious that the solution algorithm of §4.5.1 is unable to
locate eigenvalues near the accumulation point �a = �1. We discuss this phenomenon
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Table 4.1 Parameters corresponding to Hopf bifurcation

parameter a t0 r ĉ1 ĉ2 µ1 µ2

value 1.0 1.0 4.220214885988226 3.0 �5.5 0.5 1.0

0

0

2

2

2 1

4

4

Discretisation
Analytical

Fig. 4.3 Spectrum at a Hopf bifurcation. Comparison between analytic approach and discretised system
(m = 50).

below. Apart from that, the numerical approximation seems to be very close to the analytic
solution. Only in the far left half-plane an error can be observed. From a dynamical point
of view such an error is of course rather innocuous.

First Lyapunov coefficient

In order to determine analytically the type of Hopf bifurcation (i.e. sub- or supercritical),
the first Lyapunov coefficient has to be determined. Before the result of §4.4.2 can be
applied, the eigenfunction corresponding to the eigenvalues at criticality has to be deter-
mined. Application of Theorem 4.28 yields

f(t,x) = el t⇥
g1(er1x + e�r1x)+ g2(er2x + e�r2x)

⇤

8 t 2 [�h,0], 8x 2 W

with
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r1 = 0.321607348361597�0.880461478656249i

r2 = 0.110838003673357�2.312123026384049i

g1 =�0.191821747840362�0.172140605861736i

g2 =�0.080160108888561

corresponding to l = 1.644003102046893i. (Note that in the present example with t0 as in
Table 4.2 and W = [�1,1] the delay interval equals [�h,0] = [�3,0].) Since the activation
function S is odd, its second derivative vanishes and the critical normal form coefficient
g21 in (4.72) significantly simplifies to

g21 =
1
2
hf�,D3R(0)(f ,f ,f)i

The pairing is expressed as a contour integral around l which we evaluate numerically,
see §4.4.4. We find g21 ⇡ �0.326+ 0.0389i and hence the first Lyapunov coefficient is
l1 ⇡�0.198. The negative sign of l1 indicates a supercritical Hopf bifurcation. Therefore
stable periodic solutions are expected to emerge from the bifurcating steady state.

Simulations

We choose r = 6 which is beyond the critical parameter value of Table 4.1. For the initial
condition V (t,x) = e = 0.01 for t 2 [�h,0] with h = 3 and x 2 [�1,1] the simulation result
is shown in Figure 4.4. After a transient time, the system approaches its stable periodic
attractor. The convergence to stable periodic motion is consistent with the sign of the first
Lyapunov coefficient. Furthermore, both the shape and period of this attractor match with
the eigenfunction and eigenvalue respectively.

0 10 20 30 40 50 60

1

0.5

0

0.5

1

Fig. 4.4 Forward time simulation of discretised system (m = 50) for r = 6 beyond a Hopf bifurcation. A
long transient is observed before the solution approaches the limit cycle.
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4.5.4 Double Hopf bifurcation

The spectrum at the Hopf point studied in §4.5.3 consists mainly of complex pairs of
eigenvalues. Therefore it is to be expected that system parameters can be tuned such that
a second pair of complex eigenvalues arrives at the imaginary axis, giving rise to a double
Hopf bifurcation. In this subsection we show that this is indeed possible and we study this
bifurcation both analytically and numerically.

Spectrum

Table 4.2 Parameters corresponding to double Hopf bifurcation.

parameter a t0 r ĉ1 ĉ2 µ1 µ2

value 1.0 1.0 4.828749714457348 3.0 �5.5 0.0 0.999592391420082

Table 4.3 Values of l and corresponding r

l r(l )

2.030930500644927i 0.454550410967142�1.057267648955222i

0.054136932895367�3.495632804443535i

1.299147304907829i 1.075429529957343�0.717519976488838i

1.128716151852882�2.306528729845143i

Parameters for which the system has two complex pairs of eigenvalues on the imaginary
axis and no eigenvalues in the positive right half-plane are identified, see Table 4.2. The
corresponding spectrum is depicted in Figure 4.5 while Table 4.3 lists the values of l at
this critical point. As with the regular Hopf bifurcation, we observe that the root finding
algorithm misses most eigenvalues near the essential spectrum at �a =�1.

Next we compute the eigenfunctions corresponding to the critical eigenvalues. For this
purpose Theorem 4.28 may be applied using the data in Table 4.3. Modulus and argument
of both eigenfunctions are depicted in Figure 4.6.
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Fig. 4.5 Spectrum at a double Hopf bifurcation. Comparison between analytic approach and discretised
system (m = 50).
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Fig. 4.6 Eigenfunctions corresponding to the critical eigenvalues. l = i1.299... is shown left and l =

i2.030... on the right. Solid lines depict the modulus and dashed lines the argument.
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Normal form coefficients

With this information available, the normal form coefficients of the double Hopf bifurca-
tion may be evaluated. The coefficients g2100, g1011, g1110, and g0021 from §4.4.3 are found
as in §4.5.3, which results in the matrix

"

p11 p12

p21 p22

#

=

"

�8.822 �3.367
�13.79 �1.310

#

Since p11 p22 > 0, we conclude that this double Hopf bifurcation is of the ‘simple’ type,
see [74, §8.6.2]. Defining q

:= p12
p22

⇡ 2.57 and d

:= p21
p11

⇡ 1.56, we find that qd > 1 and
therefore this ‘simple’ bifurcation has sub-type I [74]. The key feature of this sub-type is
the presence of a regime in parameter space for which two distinct stable periodic solutions
exist.

Simulations
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Fig. 4.7 Bi-stability near double Hopf bifurcation: for r = 6 and µ2 = 1 the time evolution is shown
for different initial conditions (m = 50). Top and bottom diagrams correspond to (4.82a) and (4.82b)
respectively.

The parameters are adjusted slightly, such that both pairs of complex eigenvalues have
a positive real part. More specifically we choose r = 6 and µ2 = 1 while keeping other
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parameters as in Table 4.2. For the following two initial conditions

V (t,x) = ex (4.82a)

V (t,x) = e (4.82b)

with e = 0.01, the discretised system (m = 50) is integrated forwards in time, see Figure
4.7.

For the chosen parameters the system has two stable periodic attractors and the asymp-
totic behaviour is determined by their initial conditions. This result is consistent with the
predictions of the normal form computation. Furthermore we observe, since the system is
close to the double Hopf bifurcation, that both the shape and period of the periodic solu-
tions are fairly well approximated by the critical eigenfunctions (c.f. Figure 4.6). Indeed,
the moduli of the eigenfunctions correspond to the amplitude of the asymptotic solution.
For either of the solutions the extrema are located near the borders of the domain. The
antiphasic solutions in the upper panel are indicated by the jump of size p in the argument
of the first eigenfunction, see Figure 4.6 on the left.

4.6 Discussion

We have demonstrated that neural field equations with transmission delay fit well into
the sun-star framework for delay equations. As a consequence, standard results from dy-
namical systems theory, such as the principle of linearised (in)stability, center manifold
reduction and normal form computation, are readily available. These, in turn, open the
possibility for a systematic study of codimension one and two local bifurcations, w.r.t. pa-
rameters in the connectivity and activation functions. This facilitates an understanding of
the effect of parameters in terms of biological quantities.

In §4.5 we analysed the dynamics of a one population model with the inverted wizard
hat as connectivity function. The choice of an inverted Mexican hat is biologically more
plausible, as pyramidal cells are surrounded by a cloud of interneurons, while long range
connections are by and large excitatory. We have chosen the inverted wizard hat mainly
for mathematical convenience. Indeed, in §4.3.3 an analytic formula for the location of
the eigenvalues was derived. It is well known that the combination of an inverted Mexican
hat connectivity with a transmission delay leads to dynamic instabilities [14, 67]. In [28]
Turing instabilities were shown to occur for the inverted wizard hat connectivity.

We have seen that the stationary spatially homogeneous state destabilises upon increas-
ing the steepness (gain) of the activation function. This is in line with other findings in-
dicating that the activation function strongly influences dynamical behaviour, see for in-
stance [48, 29].
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It is mathematically challenging to consider neural field equations on unbounded spatial
domains, leading to infinite delays, although such is of less importance from a biological
viewpoint. Our main goal for the near future is to develop tools for numerical bifurcation
analysis for the class of equations studied in this paper. Normal form computation is a first
prerequisite for this task. Hence we are on our way.





Chapter 5
Spatially extended neurons as extension to neural
fields

Abstract Recent development of new mathematical tools for studying lumped models
with a spatial component, i.e. neural fields, allows for the incorporation of features that
were previously excluded for they made the mathematical analysis intractable; e.g. dis-
tance dependent transmission delays. Now that traditional neural fields, requiring exten-
sive simplifications of both the single cell dynamics and the network architecture, are
about to be fully characterized, the time seems right to consider more involved formula-
tions of neural fields. Here we propose an extension to the prevalent framework of neural
fields that facilitates the inclusion of relevant spiking behaviors observed in single neurons,
e.g. tonically bursting and rebound spikes/bursts; features surmised to be incompatible for
lumping. This new setting is dependent on the firing rate reduction of a single neuron, i.e.
a model that reproduces the rate at which spikes are generated rather than the generation
of individual spikes. Results are consistent with traditional reductions based on integrate-
and-fire neurons both with and without spike frequency adaptation, but the main outcome
is the formulation of a neural field based on Izhikevich neurons. Although we show a clear
correspondence between the original network and the reduction, the reduction still needs
refinements; both on the level of modeling as well as the mathematical analysis.

5.1 Introduction

Lumped models of neural tissue provide a concise description for the collective action of
many neurons which can be analyzed thoroughly with, for example, dynamical systems,
and stochastic processes. Despite the fact that models of this type describe the neural dy-
namics at a much coarser level, such that fine structures of the underlying network of
spiking neurons are lost, it is, on the other hand, advantageous that lumped models charac-
terize the network at a scale comparable to prevalent imaging techniques, like EEG, ECoG
and MEG in a clinical environment, and calcium imaging and LFP in an experimental

99
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setup. For that reason, these models are helpful for interpreting the results and relating
them to physiological mechanisms underlying the observations.

Depending on the goals one might have in mind, a preference could be given to study
a certain class of models using a certain tool. Theory of stochastic processes and results
from quantum mechanics have been used to derive lumped models from first principles:
global behavior of a population neurons, which fires spikes unpredictably (e.g. a Poisson
process) to given input, can be expressed as a stochastic differential equation [18, 11]. The
deterministic part of the SDE obtained in this manner can be studied methodically using
dynamical systems theory: identification of bifurcations and multistability give a descrip-
tion of the possible states and transitions the model might exhibit, which are considered
relevant for some cases of epilepsy [81, 100, 125]. Although steady states are deemed
mundane from a dynamical systems’ point of view, they have seem to play a critical role
in the clinical relevance of the model. Indeed, the brain is sometimes viewed as a filter,
characterized by the dynamical system, that processes a certain noisy input, representing,
for instance, sensory input from thalamus. In this case, Laplace and Fourier transforms can
be used to determine to frequency response of the model, which is shown comparable to
the power spectrum of electrical neural activity [82, 98, 80].

Lumped models which have a spatial component, often refered to as neural fields1, are
less suitable for the latter type of analysis, for the simple reason that input and output are
poorly defined for a spatial arrangement. While neural fields often have a concise formu-
lation, analysis from a dynamical systems’ point of view is in most cases far for trivial.
Already from the earliest incarnations of such fields, analysis was performed numerically
[133] or additional assumptions were required for tractability; a common one being the
(almost) binary activation of neural tissue (first introduced by Amari [2]). Over the past
years, several novel techniques have been proposed which offer new ways for studying
neural fields. For instance, the stability and dynamics of pulses and waves can be studied
with Evans functions [71], the evolution of a contour of an active region in a neural field
is given in [31] and the dynamics of neural fields with distance-dependent transmission
delays are in full detail characterized in [118].

Now that such new analytic tools enable us to comprehend the complex behavior of
neural fields, one might wonder whether the prevalent neural field equations can be ex-
tended. Although many variants exist for the reduction of the dendrites, the synapses and
the network architecture — of which an excellent overview is given in [16], — a care-
ful reduction of the spiking dynamics of individual neurons is typically amiss. Although
in some reductions take spike frequency adaptation (SFA) into account, more complex

1 Although the brain is a three-dimensional structure, the terminology “field,” suggesting a two-
dimensional organization, is still accurate: the brain’s predominant structure is the cortical sheet which
can be seen as a collection of two-dimensional layers.
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neural dynamics, like instrinsic bursting and rebound spikes/bursts, are still thought to be
incompatible for lumping.

Here we propose a novel framework, based on existing lumping procedures, that en-
ables the inclusion of a wider class of spiking behaviors. Essentially, the state space of a
single neuron is split in two regimes: subthreshold and spiking. By leaving the model’s
behavior unaltered in the subthreshold regime, processes responsible for “advanced” dy-
namics, e.g. shunting inhibition and slow calcium currents, remain intact, allowing an
accurate manifestation of slow currents. Instead, only the fast dynamics responsible for
the spike generation are simplified: we replace them with a slowly varying variable that
accurately describes the firing rate of the neuron, which might be dependent on the current
state of the slow variables. Furthermore, the firing rate itself can, if necessary, also be used
to estimate the contribution to the slow variables due to spiking, e.g. inflow of calcium
ions. Next, the reduced model is extended across space and common techniques are used
to simplify the network connectivity in order to obtain a closed neural field formulation.

The procedure is illustrated using three examples: the first two are used to obtain the
prevalent neural field equations with and without adaptation, while the third example con-
siders the Izhikevich neuron, c.f. [68]. A neural field formulation which relates to this
popular model of a spiking neuron is novel and might provide an additional tool in study-
ing networks of this type of neuron.

The outline of this text is as follows. We begin by describing the lumping of one pop-
ulation of spiking neurons by first smoothing the dynamics of each neuron over time and,
thereafter, we simplify the spatial structure of the connections, upon which the neural field
equations readily appear. The equations found in this manner are dependent on the firing
rate reduction of a single neuron, i.e. a model which does not produce individual spikes but
one that mimics the rate at which spikes are generated. Although trivial in some cases, no
general or rigurous procedure exists for this reduction; hence we illustrate what such re-
duction might look like for concrete models. Finally we compare simulation results of both
the detailed model and the spiking neuron network to assess the quality of the reduction.

5.2 Generalized neural field reduction

5.2.1 One population of spiking neurons

For clarity, a neural field of only one type of neurons, whose connections are dependent on
the separation between two cells, is considered first. Thereafter, the results obtained from
one population are easily extended to multiple interacting populations which might have
different properties.
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By assuming that the interaction between neurons occurs exclusively unidirectional via
synapses (thereby neglecting gap junctions, diffusion of ions, etc.), it suffices to consider
the spike times of neurons only. For a given neuron let T (t) := {t̂i, i = 1, . . . ,n|0 < t̂1 <

.. . < t̂n  t} be the (possibly empty) set of all its spike times up to and including time t. If
it is assumed that each spike arriving at a synaptic terminal results in an identical response
of the synapse, the synaptic activation can be considered a linear process. Letting s denote
the synaptic activity, its value at time t is given by

s(t) = Â
t̂2T (t)

q(t � t̂) (5.1)

where q is given activation function corresponding to a single spike. This assumption,
however, forces us to neglect slow processes at the synaptic sites, for example synaptic
depression and potentiation. In order to ensure causality, such that synapses do not antici-
pate to events that did not occur yet, one requires q(t) = 0 for t < 0. From the biological
point of view, it is natural to assume that the synaptic activation is bounded from above
and decays over time. Hence, q(t)Ce�at for all t � 0 and some C,a > 0.

Furthermore, q is considered as the impulse response of a linear operator Q : D 0 7! D 0,
i.e.

Qq = d

where d is the Dirac delta mass centered at 0 and equality holds in the sense of distribu-
tions. Now the synaptic activation (5.1) takes the form:

Qs(t) = Â
t̂2T (t)

d (t � t̂) (5.2)

where the linearity of Q is used and equality holds in the sense of distributions.
Next, the interactions for a population of neurons are described. For a population of N

neurons let si denote the synaptic activation for i = 1, . . . ,N and Ti the corresponding spike
times. The linear operator Q, however, is identical for all neurons in the population. Let
zi(t) be the total synaptic activation of synapses onto neuron i, then zi is given by:

zi(t) =
N

Â
j=1

wi js j(t � ti j) (5.3)

where the synaptic weight wi j represents the strength of connections from neuron j to
i and ti j is the corresponding transmission delay due to a finite propagation speed. For
xi : R 7! Rn, xi(t) represents the state of neuron i at time t. Since some single-cell models
are based on reset mechanisms which allow jumps in the state-space, the time course of
xi needs not be continuous. Therefore, xi is taken càdlàg, i.e. right continuous with left
limits. Away from the spike times t̂i,k, for k = 1,2, . . . and t̂i,0 = 0, the state of the neuron
satisfies the differential equation:
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ẋi(t) = g(xi(t),zi(t)), xi(0) = xi,0, t 2 [t̂i,k�1, t̂i,k),k = 1,2, . . . (5.4)

where g is a model for the dynamics of the neuron. Furthermore, we assume that any finite
time interval only contains finitely many spikes.

Now, the full neural network is given by cellular dynamics (5.4), communicating via
synapses as in (5.2), which are connected according to (5.3).

5.2.2 Reduction

The network of spiking neurons can be lumped in several ways. Here is chosen to first
obliterate the spikes of the individual neurons, which is refered to as temporal averaging
because it smooths the spike trains produced by neurons. Thereafter, upon making addi-
tional assumptions on the spatial structure of the network, the connectivity between the
cells can be condensed — this is called spatial averaging.

5.2.2.1 Temporal averaging

Time coarse-graining serves two main purposes. Omitting individual spikes of the neurons
reduces the amount of bookkeeping. Secondly, possible discontinuities of the underlying
dynamical system are smoothed, such that the remaining vectorfield is Lipschitz continu-
ous. Let us consider each of the arguments in more detail below.

Disregarding the spike times of a neuron implies that the neurons within the population
interact with each other with rate encoding, rather than spike encoding. In other words,
the time-varying rate at which spikes are generated is of greater interest than the precise
times at which the individual spikes are generated. This is typically the case for neurons
reaching high spiking frequencies, or neurons with relatively slow synapses.

As in many other cases, much can be learned from the system when it is reduced ad
absurdum. If it is assumed that a neuron generates spikes at a rate l (t), independent of any
spikes produced before time t, the spike train of a neuron can be considered as a realization
of an inhomogeneous Poisson process [34, §3.1.ii]. Clearly, the memorylessness of the
neuron is an unrealistic premise, since neurons do not only have a refractory period, they
also tend to almost periodic behavior when firing at high frequencies — in which case
spike times are strongly dependent on preceding spikes. Let T̃ (t;l ) be the set of spike
times generated by an inhomogeneous Poisson process with rate l (t), then the synaptic
activation, now a stochastic process denoted by s̃(t), is again of the form:

s̃(t) = Â
t̂2T̃ (t;l )

q(t � t̂).
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The process s̃ is called a shot noise process [34, §5.6.ii], whose expectation and variance
are given by:

V(t) := E[s̃(t)] =
Z t

0
l (t)q(t � t)dt Var[s̃(t)] =

Z t

0
l (t)q2(t � t)dt

The expectation V satisfies the inhomogeneous ODE:

QV = l ,

where we imposed the initial conditions V

(k)(0) = 0 for all k = 0,1,2, . . ..
Similarly as in the original model a network is built of these time-averaged neurons and

subscripts are used to specify the synaptic activation, firing rate, etc. for the correspond-
ing neuron. From the expected synaptic activation of a single neuron, one readily arrives,
analogous to (5.3), at the expected total synaptic activation onto cell i, denoted by zi(t):

zi(t) =
N

Â
j=1

wi jV j(t � ti j). (5.5)

Disregarding spikes has a major consequence for the neural models which incorpo-
rate spike-dependent reset mechanisms, such as integrate-and-fire neurons and variations
thereof. Models of this type have to be adjusted such that:

• the reduced model is independent of spike times, and
• the reduced model yields a firing rate which accurately reproduces the rate of the

original model.

The first objective is required in order to obtain a dynamical system which functions in
the abscence of spikes times, while the second objective ensures that the synaptic variable
can be mimiced adequately. Although the identification of this reduced model is in some
special cases straightforward, there does not seem to exist a general procedure for this re-
duction. In section 5.3 the reduction is performed for three different models: the IF neuron,
IF neuron with SFA, and the Izhikevich neuron. The latter is treated in great detail because
its reduction is novel and its result convincing.

For now it suffices to assume that such a firing rate reduction exists, characterized by
some g : Rn ⇥R 7! Rn and f : Rn ⇥R 7! R such that the rate of change of state ci(t) of
the i-th neuron at time t, with ci 2C1(R,Rn), satisfies:

ċi(t) = g(ci(t),zi(t)).

Here zi(t) represents the total synaptic activation on cell i at time t. Furthermore, the
instanteneous firing rate fi of the neuron at time t is given by:

fi(t) = f (ci(t),zi(t)).
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which yields the corresponding synaptic activation

QVi = fi.

The above three equations, together with (5.5), lead to the temporally averaged model
network model.

5.2.2.2 Spatial averaging

Whenever a network has a spatial structure of some sort, it can be considered for spatial
averaging. In this section the reduction is performed and the required assumptions are
given and discussed.

First of all, a distinction is made between network structure and network connectivity or
realization: the former is a prescription, possibly based on physiology, for the generation
of connections in the network, which typically involves a random process of some sort.
A realization of this process is now called a connectivity. Due to the stochastic nature of
the connections, one can define the expected weight of a connection: w̄i j = Ewi j. Upon
denoting the position of the ith neuron by ri 2 W , where W is a bounded open region of
Rn, the expected weight from neuron j to neuron i is expressed as:

W (ri,r j) = w̄i j = Ewi j

The biological background of the model makes it natural to assume that W : W ⇥W 7! R
is continuous. Note, however, that this continuity only applies to the expected value: a
realization of the network will almost surely violate this property.

From the synaptic weights, the expected time averaged synaptic activation arriving at a
neuron with position r is given by:

Z(t,r;r1, . . . ,rN) =
N

Â
j=1

W (r,r j)V j(t � t(r,r j)) (5.6)

with t(r,r0) 2C(W ⇥W ;R+) denoting the transmission delay from a neuron with position
r0 to one at r. Have h denote the maximum delay in the system:

h = sup
r,r02W

t(r,r0)

Since Z(t,r;r1, . . . ,rN) is continuous, nearby neurons are expected to receive almost iden-
tical input. In the abscence of multistability and away from bifurcations, it seems natural to
assume that neurons receiving similar input will also spike at a comparable rate. Implica-
tions and complications arising from this assumption will be discussed later in more detail,
but for now we assume it holds. In this case, the function F : R⇥W 7!R, representing the
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instantaneous firing rate of a neuron at position r at time t, is continuous too. Likewise, the
expected synaptic activation S(t,r), resulting from the equation

QS(·,r) = F(·,r)

is continuous if and only if its initial value S0 is so on [�h,0]⇥W .
By setting S(t,ri) = Vi(t) equation 5.6 takes the form:

Z(t,r;r1, . . . ,rN) =
N

Â
j=1

W (r,r j)S(t � t(r,r j),r j).

Considering that Z(t,r;r1, . . . ,rN) is the expected synaptic input conditioned to the neu-
ron positions ri, the unconditional expectation might be more valuable. Henceforth, it is
assumed that positions r1, . . . ,rN are independently and uniformly distributed on W . This
yields:

Z̄(t,r) = E[Z(t,r;r1, . . . ,rN)]

=
N
|W |

Z

W

W (r,r0)S(t � t(r,r0),r0)dr0

where |W | =
R

W

dr0 denotes the size of the domain. By defining the density r = N
|W | , and

dropping the bar, one obtains:

Z(t,r) = r

Z

W

W (r,r0)S(t � t(r,r0),r0)dr0, (5.7)

where the neuron density r will from now on be included in the weight function W .
The last remaining unknown, which has to be determined before the spatial averaging

is completed, is the firing rate F(t,r). Analogous to the previous steps in the procedure,
the result of the temporal averaged system is extended to the domain W . Hence, the rate of
change of the state of a neuron with position r at time t is given by X(t,r), such that:

∂X
∂ t

(t,r) = g(X(t,r),Z(t,r)).

Similarly, the firing rate is determined by:

F(t,r) = f (X(t,r),Z(t,r)).

By substition of (5.7) one readily arrives at the neural field formulation:

QS(t,r) = f
✓

X(t,r),
Z

W

W (r,r0)S(t � t(r,r0),r0)dr0
◆

(5.8a)

∂X
∂ t

(t,r) = g

✓

X(t,r),
Z

W

W (r,r0)S(t � t(r,r0),r0)dr0
◆

(5.8b)
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where notation is abused such that QS(t,r) refers to
⇥

QS(·,r)
⇤

(t).
At this point, the terminology spatially extended neuron has become clear, for the struc-

ture of the system (5.8) is as follows: The neural field is obtained by essentially extending
a single neuron model to space and combining it with a relevant interaction, which has a
spatial dependency.

5.2.3 Multiple populations

The derivation presented so far in this section has focused on the reduction of only one
population of neurons. Since neural tissue clearly consists of multiple types of neurons, for
instance excitory and inhibitory, it appears mandatory to discuss the extension of the neural
field (5.8) to multiple populations of cells. Instead of starting with a network of multiple
types of spiking neurons and more or less repeating the procdure followed for a single
populations, the extended model is put forward without derivation. The same method can
be applied, but the notation becomes too convoluted to provide any new insights.

Now, let N denote the number of different populations in the network. Let the neurons
in population i be located in a bounded open connected subspace Wi ⇢ Rn and suppose
they have a synaptic response characterized by Qi. Furthermore, the states of the neurons
underlying population i are given by Xi : R⇥Wi 7!Rni with ni representing the dimension
of the temporally averaged cell model corresponding to population i. With Si : R⇥Wi 7!R
representing the synaptic activity of neurons in population i, the input Zi j(t,r) from all
neurons in population j arriving at neuron of population i with position r at time t is given
by:

Zi j(t,r) =
Z

W j
Wi j(r,r0)S j(t � ti j(r,r0),r0)dr0, r 2 Wi

with ti j : Wi⇥W j 7!R+ the transmission delay from a neuron in population j at position r0

to a neuron in population i at position r and Wi j : Wi ⇥W j 7! R the corresponding weight.
Since synaptic activity arriving at a cell can activate different processes on the receiving

neuron, the inputs from different populations are not summed to provide the total input
at a neuron, instead they are provided as separate arguments. This allows, for instance,
to distinguish between shunting and hyperpolarizing inhibition, or model the effect of a
channel which is both ligand- and voltage-sensitive, like the NMDA receptor. By including
such features into the time averaging procedure, one obtains for each population i a gi :
Rni ⇥R⇥ . . .⇥R

| {z }

⇥N

7! Rni and a fi : Rni ⇥R⇥ . . .⇥R
| {z }

⇥N

7! R such that for r 2 Wi:
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QiSi(t,r) = fi (Xi(t,r),Zi1(t,r), . . . ,ZiN(t,r))

∂Xi

∂ t
(t,r) = gi (Xi(t,r),Zi1(t,r), . . . ,ZiN(t,r))

which, for i = 1, . . . ,N, completes the mean field formulation for N populations.

5.3 Temporal averaging of specific models

In the previous section, the time-course smoothing procedure has focused particularly on
the smoothing of spike trains with respect to network dynamics. The reductions obtained in
that manner are dependent on the reduction of a single cell, characterized by f : Rn ⇥R 7!
R and g : Rn ⇥R 7! Rn on some reduced state space Rn . This step, however, is crucial
since the final lumped model inherits all properties of this reduced model, including the
flaws the reduction might have. Here, three examples are provided to illustrate how this
procedure can be performed for different models.

5.3.1 IF neuron

The first example is the simplest type of an integrate-and-fire neuron. Let f(t) 2 [0,1)
denote the phase of the neuron at time t and have:

ḟ(t) = f (I(t)), f mod1, f(0) = f0

in which f 2 C(R,R) is a non-negative Lipschitz-continuous function denoting the neu-
ron’s response to an input current I(t). The neuron generates a spike at time t̂ when

lim
t%t̂

f(t) = 1.

From here it is obvious that f (I(t)) represents the instantaneous firing rate of the neuron
at time t and that there is no need for additional state variables; henceforth n is set to 0.
Whenever the input current I is chosen as the total synaptic input Z, the resulting system
is of the form:

QS(t,r) = f
✓

Z

W

W (r,r0)S(t � t(r,r0),r0)dr0
◆

, r 2 W (5.9)

which, for Q = ∂

∂ t +a , yields the most traditional formulation of a neural field.
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5.3.2 IF neuron with adaptation

To enrich the dynamics of the integrate-and-fire neuron, the model can be extended with
a slow hyperpolarizing current, which activates whenever the neuron generates a spike.
The resulting neuron will have spike frequency adaption (SFA), i.e. upon depolarizing
stimuli the neuron will spike at a rate which decreases slowly over time. In some cases, the
adaptation might even (temporarily) prevent the neuron from spiking. Denoting the slow
current with u, the model is of the form:

ḟ(t) = f (I(t)�u(t)), f mod1,

u̇(t) =�µu(t), u(t̂+) = u(t̂�)+y for t̂ a spike time

for positive µ and y .
Similarly as in the IF model without SFA, the firing rate is readily avaible from the

equation for the phase f . Since spike frequency is solely dependent on the slow variable
and the input current, we consider u as an additional state variable in the reduced model,
hence we set n = 1. As the original dynamics of u are dependent on the spike times of the
neuron itself, we have to average the discrete increments over time; resulting a time coarse-
grained current ū. For slowly varying firing rates, the current u is expected to increase
with y every 1

f units of time. Hence, the expected increase per unit of time is given y f ,
yielding:

˙̄u(t) =�µ ū(t)+y f (I(t)� ū(t)).

By dropping the bar and choosing the input current I to equal the synaptic activation s, one
obtains the neural field with SFA:

QS(t,r) = f
✓

Z

W

W (r,r0)S(t � t(r,r0),r0)dr0 �u(t,r)
◆

,

∂u
∂ t

(t,r) =�µu(t,r)+y f
✓

Z

W

W (r,r0)S(t � t(r,r0),r0)dr0 �u(t,r)
◆

for r 2 W .

5.3.3 Izhikevich neuron

The Izhikevich neuron is a popular model in computational neuroscience because it has
rich dynamics whilst being computationally tractable:
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8

<

:

V̇ = 0.04V 2 +5V +140�u+ Iext(t)

u̇ = a(bV �u)
, V (t�) = 30 )

8

<

:

V (t+) = c

u(t+) = u(t�)+d
(5.10)

Indeed, with four parameters the model is able to reproduce many of the key features
observed in real neural tissue, e.g. intrinsic spiking/bursting, spike-frequency adaptation,
and rebound spikes/bursts. Due to a clever reset process, as in all other integrate-and-fire
models, the model does not require a fast recovery variable relating to a resonating current.
Hence, the variable u is often seen as a slow variable within the neuron, e.g. Calcium
concentration.

5.3.3.1 Izhikevich neuron in the phase plane

V=0

A C

u=0
u V

B

Fig. 5.1 V � u phase plane of the Izhikevich neuron. (Blue) nullclines of V and u, (green) reset value c,
and (red) periodic solution of the system. The red dots correspond with resets. See text for description of
the points A, B, and C.

Since the Izhikevich model has two variables, phase plane analysis is a natural starting
point for characterizing the model. Figure 5.1 depicts the phase portrait of an intrinsically
bursting neuron: Starting on the V -nullcline at point A, the dynamics are exclusively gov-
erned by the u component which are, in this case, directed downwards. As u decreases
slowly, the fast dynamics in the V direction push the system towards the V -nullcline, caus-
ing the orbit to closely follow the quadratic V -nullcline. After passing point B, V increases
fast until the threshold V = 30 is reached and V is reset onto the green line with increased
u. As long as the system’s reset point is right of the unstable branch of the V -nullcline,
another spike is generated. Note that this condition is equivalent to the resets points lying
below point C: the intersection point of the V -nullcline and the reset line V = c (in green).
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Upon being reset above C, the dynamics in the V -direction are pointing towards the left
and the system evolves in that direction until the limit cycle is completed when hitting A.

From this phase plane several key features are chosen, which are to be preserved by the
reduced model:

• The right branch of the V -nullcline determines the firing threshold.
• The left branch of the V -nullcline characterizes the dynamics in the subthreshold

regime.
• The u-nullcline left of the firing threshold determines the slow dynamics in the sub-

threshold regime.
• Point B corresponds to the entrance of the bursting regime.
• Point C corresponds to the exit of the bursting regime.
• Point A corresponds to the undershoot after burst termination.
• The firing rate or the reciprocal of the interspike interval.

Furthermore, the Izhikevich neuron also has features which are to be excluded in the re-
duced model:

• Spiking dynamics and reset.
• The dynamic contribution to u during a spike.

An interpretation of these criteria, expressed as a set of ODEs, is as follows.

5.3.3.2 Realization

V=0

A C C'

B'

u=0

u=0

B

u V

Fig. 5.2 V �u phase plane of the reduced model. (Blue) nullclines of V and u, (green) reset value c, and
(red) periodic solution of the system. See text for description of the points A, B, C, and C’.

First, the model’s ability to produce spikes, i.e. V quickly reaches 30mV, is taken away
by adding another branch to the V -nullcline, see Figure 5.2. Orbits close to this addi-
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tional branch correspond with a neuron being in burst-state and, since the condition (non-
)bursting is binary, the precise shape and position of this artificial branch are of little im-
portance.

In the bursting regime, the time between consecutive spikes is approximated as follows.
Assuming that J = �u + Iext(t) varies sufficiently slow to be considered as a constant
parameter for V , the reduced membrane potential v satisfies:

v̇ = 0.04v2 +5v+140+ J, v(0) = c (5.11)

where the fact is used that v is reset to c after each spike. Albeit nonlinear, this equa-
tion has an analytic solution v(t;J,c) which is used to find the time-to-spike Ts for which
v(Ts;J,c) = 30:

Ts(J;c) = T (
p

65�4J ;30)�T (
p

65�4J ;c),

with function T given by:

T ( j;n) =
5
j



ln
✓

25
2

+
n

5
� j

2

◆

� ln
✓

25
2

+
n

5
+

j
2

◆�

Here it is noted that j is allowed to be complex, in which case the complex logarithm is
used. In order to have Ts(J;c) positive and real-valued, it is necessary (and sufficient) that

Re
✓

25
2

+
c
5
�

p
65�4J

2

◆

> 0.

Hence,
0.04c2 +5c+140+ J > 0, (5.12)

which is equivalent to (5.11) having a positive right hand side at the initial value.
Inside the bursting regime the instantaneous firing rate is now readily determined as

the reciprocal of the inter spike times. Since, by definition, a burst is a brief period during
which the neuron fires at high rates, this proposed definition of the firing rate is trou-
blesome, for it might take arbitrary low values. Hence, the firing rate inside the bursting
regime is capped at a minimal value:

fb(J;c) =

8

<

:

max
⇣

1
Ts(J;c) , fmin

⌘

0.04c2 +5c+140+ J > 0,

fmin otherwise

In order to distinguish between bursting or non-bursting regime, the actual firing rate is set
to:

f (V,J;c) = H
w

(V � c) fb(J;c) (5.13)
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with H
w

a smooth approximation to the Heaviside step function with steepness-parameter
w . The step function aligned at the reset value now distinguishes between the bursting and
non-bursting regimes of the neuron.

This firing rate is not only the main output variable of the neuron, but it is also finds
its way back into in the dynamical system. Namely, everytime a spike is generated, the
recovery variable is increased by d, which yields an time-averaged increase rate of f d in
the reduced model. Hence, the recovery variable in the reduced model takes the form:

u̇r = a(bVr �ur)+d · f (Vr,�ur + I;c).

Although the precise position and shape of the additional branch are insignificant, the
local maximum at C0 is not. Since at this point the stability of the slow manifold, i.e. V -
nullcline, changes due to a fold bifurcation, it corresponds with the termination of the burst.
For that reason it is important that this maximum is in line with the original termination
point C, such that the undershoot at A is preserved accurately. Taking into account the
requirement that subthreshold behavior should not be modified too much, the new branch
is conveniently introduced by an exponential. In this case, the full reduced system takes
the form:

8

<

:

V̇r = 0.04V 2
r +5Vr +140�ur + Iext(t)�x exp(h(V � c))

u̇r = a(bVr �ur)+d · f (Vr,�ur + Iext(t);c)
(5.14)

with h and x parameters characterizing the additional branch. Appropriate values for these
parameters can be determined as follows: Have u = nv(V ) depict the V -nullcline of the
original Izhikevich model, then the level of point C in Figure 5.2 is given by nv(c). For
u = nvr(Vr) = nv � x exp(h(V � c)) the Vr-nullcline of the reduced model, the following
equations should hold to have point C0 at the same level as C:

nvr(c+k) = nv(c)

n0vr(c+k) = 0

with k representing the horizontal separation between C and C0. Solving the equations
results in:

h =
n0v(c+k)

nv(c+k)�nv(c)
x =

nv(c+k)�nv(c)
ehk

.

It is undesirable to choose low values of k since the additional branch will be very steep
and the stiffness of the dynamical system increases unnecessarily. Large values, on the
contrary, will result in a branch which is too gradual, such that both the timing and the
subthreshold behavior are affected. Here k is chosen as 0.8.
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5.3.3.3 Single cell comparison

In order to assess the quality of the proposed reduction (5.14), simulations are performed
for different parameters of the model. Not only the membrane potentials and recovery
variables of both models, also the output firing rate of the reduced model is matched with
the discrete spikes of the original model. For that, define:

N(t) := number of spikes in [0, t] (5.15a)

Nr(t) :=
Z t

0
f (Vr(t),�ur(t)+ Iext(t))dt (5.15b)

for the Izhikevich and the reduced model respectively.
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Fig. 5.3 Tonic bursting neuron, which is suppressed with a negative current. Top, middle, and bottom
diagrams correspong with V , u and N (c.f. (5.15)) respectively. Parameters as follows: a = 0.02, b = 0.2,
c = �55, d = 2, k = 0.8, and fmin = 0.1. Furthermore, a background current I0 is given of magnitude 6,
which is set to �6 between 200–500ms, resulting in a suppression of the bursting pattern.

Figure 5.3 shows a typical comparison of two tonically bursting neurons. The general
impression is that the reduction very successful in mimicing the original Izhikevich model.
Although in the latter half of the simulation the inter-burst frequency of the reduced model



5.4 Comparison 115

is higher, which results in a phase difference between both models, the average spiking
behavior, on the other hand, is accurately preserved by the reduction.

An overview of other types of spiking behavior is given in Appendix B.

5.3.3.4 Neural field formulation

For completeness we state the full neural field formulation:

QS(t,r) = f (V (t,r), I(t,r)) , (5.16a)
∂V
∂ t

(t,r) = 0.04V 2(t,r)+5V (t,r)+140+ I(t,r)�x exp(h(V (t,r)� c)), (5.16b)

∂u
∂ t

(t,r) = a(bV (t,r)�u(t,r))+d · f (V (t,r), I(t,r)) (5.16c)

where f is given by (5.13) and I(t,r) by

I(t,r) =�u(t,r)+ I0 +
Z

W

W (r,r0)S(t � t(r,r0),r0)dr0 (5.16d)

with I0 representing a constant applied background current.

5.4 Comparison

Now that we discussed the general derivation of neural fields and described how this for-
mulation is dependent on the type of spiking neuron of which the network consists, we
study how well the proposed neural fields corresponds to the network of spiking neurons
they represent. Simulations of the neural field and the detailed model are performed for all
three cases discussed in the previous section, i.e. integrate-and-fire, integrate-and-fire with
SFA, and the Izhikevich neuron.

Here, only the dynamics of a single population of merely identical neurons are consid-
ered, since we are primarily interested in the quantitative and qualitative comparison of
both formulations. As we are limited to only a single population, we cannot make a dis-
tinction between excitatory and inhibitory neurons. Instead, narrowing our interest strictly
to the mathematical formulation and correctness of neural fields, we violate the biological
premise by allowing neurons to make both excitatory and inhibitory connections. Although
the physiological relevance of these simulations is contrived, successes obtained in this
setting will certainly assist in understanding models which are physiologically relevant.
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Setup

To start, we only consider one-dimensional networks on the interval W = [�1,1] and ex-
ponential synapses with a decay rate a are chosen for all connections in all network, i.e.
q(t) = e�at for t � 0 and hence:

Q :=
d
dt

+a

Furthermore, in the spiking neuron network we set pcon as the probability for one neuron
to make a connection to another. The synaptic weight of this connection will be dependent
on the distance between the neurons with position r and r0:

w(r,r0) = ĉ1e�µ1|r�r0|+ ĉ2e�µ2|r�r0|.

The expected weight for a connection, which takes in account the neural density r = |W |
N ,

is now given by:

W (r,r0) = pcon
2
N

⇣

ĉ1e�µ1|r�r0|+ ĉ2e�µ2|r�r0|
⌘

.

This is equivalent to setting:

W (r,r0) = c1e�µ1|r�r0|+ c2e�µ2|r�r0|, ci := ĉi pcon
2
N
, i = 1,2

Furthermore, we choose time lags of the form t(r,r0) = t0 +
1
v |r� r0| with t0 representing

the onset delay of synapses and v the conduction velocity of action potentials. Now, both
the form of W and t are in accordance with [118].

Next to the inhomogeneties introduced in the spiking neuron network, due to the ran-
dom generation of connection, we slightly randomize the parameters of the individual
cells, too. This type of perturbation will ensure that the synchronization patterns we ob-
serve are caused due to the network interactions, rather than to intrinsic properties of the
neurons. Within the neural field formulation, the expected value of each of these parame-
ters is used.

Finally a word on the initial conditions: as delays are present in the synaptic variable
S, it is required to define its history up to the maximal delay in the system. We choose for
the case in which no action potentials have taken place before t = 0 and hence S(t,r) = 0
for t  0. For the models which include a slow variable, i.e. u in the IF with SFA and
Izhikevich models, a small linear gradient across space is applied at t = 0, such that the
system starts in an asymmetric state.
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Simulations

Simulations of the spiking neuron network are performed with Norns — Neural Network
Studio [124]: a dedicated C++ simulation tool with an intiutive Matlab interface. We dis-
tribute the total number of neurons equidistant on the domain W and generate the connec-
tions as described above. The spike trains obtained from Norns are post-processed within
Matlab, which we discuss in detail below. All simulations with the spiking neuron network
are performed for N = 400.

The neural field reduction is discretized on an equidistant mesh, as proposed by [50],
such that the resulting system is a finite system of delay differential equations with a finite
number of delays. This discretization is then evaluated using solvers for DDEs, like dde23
in Matlab or, when the system is stiff, RADAR5 in Fortran [57]. Except where noted,
simulations are run on a mesh of 60 elements.

Comparison

To assess the comparison between both models, it is desirable to compare the same physi-
cal quantities within both models. In this light, the synaptic activation S appears to be the
best choice: it can be determined from individual spike trains and it is the key variable in
the neural field formulations.

For the neural fields, S is readily available from the spatial discretization which is used
to perform the simulations. In the network of spiking neurons, we reconstruct the synap-
tic activation of all neurons by convolving the spike train with the template q. Since this
is essentially temporal averaging of the spike trains, we will also perform a type of spa-
tial averaging on the spike data in order to assist in a better comparison with the lumped
model. To that, we divide the neurons among groups of ten, i.e. the cell numbers 1–10,
11–20, etc., and we determine the average synaptic activation of every group. This char-
acterization of the network activity has a comparable resolution in both space and time as
the discretization of the neural field, such that comparing both models should be natural.

5.4.1 IF model

The integrate-and-fire neuron is studied for the sigmoidal activation function f :

f (I) =
a

1+ e�2(I�b)

a ⇠ N(0.2,0.02), b ⇠ N(0.2,0.1)

Results of the model are depicted in 5.4 for an “inverted wizard hat”-type connectivity.
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Fig. 5.4 Comparison of a network of integrate-and-fire neurons with the corresponding neural field. (Top)
shows raster plot of all spikes of the individual neurons in the network, (middle) shows the coarse-grained
synaptic activation of the spiking neuron network, (bottom) depicts the matched neural field. Time along
the horizontal axis is measured in ms, while space is depicted along the vertical axis. Parameters as follows:
a = 10, pcon = 0.9, c1 = 9, c2 = �18, µ1 = 2, µ2 = 5, t0 = 40, v = 10�1. Note that the domain is not
periodic, one wavefront is generated while another deceases.

There is an obvious similarity between both models: not only the qualitative behavior
of the traveling pulse is captured by the neural field, it does so quantitatively:

• The period of the oscillations is accurately mimiced.
• The intensity of the synaptic activation at certain time matches in both models.
• Subtle features due to transient behavior are preserved as the model approaches its

limiting attractor at t = 3000, in particular the block-like structure seen close to t =
2000.

Even though small inhomogeneties are present in the spiking neuron network, the neu-
ral field is able to mimic the underlying network very accurate. Simulations for a lower
probability, as low as pcon = 0.2, still show a striking correspondence



5.4 Comparison 119

0 6000

0 6000

0 6000

0 6000

0 6000

0 6000

0 6000

0 6000

Ia

Ib

IIa

IIb

IIIa

IIIb

IVa

IVb

0 2.6Synaptic activation

Time (ms)

Fig. 5.5 (I)-(IV) showing simulations for decreasing width parameter µ1 of lateral inhibition in a network
of IF neurons with SFA (a), combined with the corresponding neural field (b). The neural field (IIa) cor-
responds with a breather. See text for a detailed description of the behavior and comparison. Parameters:
a = 10, pcon = 0.75, c1 =�5, c2 = 10, µ2 = 4, t0 = 10, v = 5�1, µ = 100�1 (adaptation) and y = 0.05;
µ1 = [2.6,2.32,2.3,2.2] for (I)-(IV) respectively.

5.4.2 IF model with adaptation

More complicated dynamics are expected to be seen in the neural fields with adaptation.
In the absence of delays, a common phenomenon occuring in these fields is the so-called
breather [52]: a localized spot of increased activity whose width changes periodically
over time. They are typically found in systems with local excitation and lateral inhibtion,
combined with a rather steep firing rate curve f . Here we focus on this type of behavior
as well and, in particular, how well the spiking neuron network is able to exhibit the same
behavior.

A series of simulation for a decreasing width parameter µ1 of the lateral inhibition is
performed. For this series, we enhance the steepness of the firing rate function, such that
we obtain:
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f (I) =
a

1+ e�4(I�b)

a ⇠ N(0.2,0.02), b ⇠ N(0.2,0.1)

Figure 5.5 depicts how the neural field transitions from a stationary “bump”-solution (Ib)
to a breather (IIb). Although the underlying spiking neuron network reproduces the bump
(Ia), a breather is not to be seen in (IIa). Instead, the network exhibits a spot of activity
which travels periodically along the full domain, at a frequency which is close to half
of the breather (IIb). The origin of this type of behavior may be explained by (IIIb): a
small change in the parameter µ1 (i.e. from 2.32 to 2.3) results in what appears to be
a symmetry-breaking period doubling bifurcation of the periodic breather solution. The
spiking neuron network, on its turn, accurately mimics this type of behavior in (IIIa), apart
for a phase-shift. This type of behavior continues to exist in (IV) for another decrement of
the parameter.

Returning to the fact that no breather is seen in the spiking neuron network, we spec-
ulate the following: Indeed, the neural field is able to exhibit breather behavior, but its
regime in parameter-space is rather small. It seems, therefore, most likely that the inhomo-
geneties in the detailed model interfere with the expression of this delicate behavior. Yet
another reason might come from the fact that additional simulations in the same parameter
regime, which are not shown here, suggest that a more complex bifurcation structure is
present. If this is the case, then the discrepancy between (IIa) with respect to (IIb) could be
due to presence of multiple attractors in the system or due transient behavior. In the latter
case, one should keep in mind the inhomogenities of the underlying network; very delicate
structures are not expected to be reproduced in the presence of random perturbations.

A dissimilarity between both models is also found the other way around, i.e. the spiking
neuron network exhibits multistability while the neural field captures only one of these
solutions. Figure 5.6 depicts how for different initial conditions the network of spiking
neurons can exhibit two different solutions (top and middle). Independent of the initial
conditions chosen, however, the neural field would always result in a limiting behavior
shown in the bottom diagram.

Similarly as in the other case, where the neural field exhibited a type of behavior not
captured by the detailed model, it is possible that a bifurcation is nearby. Inhomogenities
in the spiking neuron network “soften” the definite nature of bifurcations, suggesting that
a bifurcation is imminent when a parameter is altered.

5.4.3 Izhikevich model

We compare a network of intrinsically bursting Izhikevich neurons to the derived neural
field (5.16). The discretization of the neural field appears to be a stiff problem, as we
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Fig. 5.6 Bistability in a network of IF neurons with SFA (top and middle) is not reproduced by the neural
field (bottom). See text for a more detailed description. Parameters: a = 10, pcon = 0.75, c1 =�5, c2 = 10,
µ1 = 2, µ2 = 4, t0 = 10, v = 5�1, µ = 100�1 (adaptation) and y = 0.05.

will discuss in more detail below, hence the simulations of this model are performed with
RADAR5.

A typical result related to a weak lateral inhibtion type connectivity is depicted in Figure
5.7. The figure shows both the start of the simulations and a fragment further into the
simulation.

In the beginning of the simulations the neural field is able to capture the key features
of the spiking neuron network, in particular the synaptic activation (i.e. left middle and
bottom). Indeed, both the frequency and the very slight curvature of the wave fronts (the
latter one is most clear by comparing the first and last wave front in the bottom left corner)
are conserved by the neural field. On the other hand, by comparing the synaptic activation
with the raster plot, i.e. left middle and top, we observe a notable discrepancy, too. That
is: the spiking neuron network has subtle traits which are not, or barely, captured by the
synaptic acitivity of the network. In particular, the black arrows indicate the ‘echoing’ of
wave fronts, during which a subset of neurons fires collective at a marked point later in
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Fig. 5.7 Comparison of a network of Izhikevich neurons (top two rows) and the corresponding neural
field (bottom row). At the beginning of the simulation, the raster plot (top left) reveals some features of
the network which are barely seen in the synaptic activation (middle left). These include, indicated with
black arrows, ‘echoing:’ a portion of neurons fires coherently some time after the majority has fired. Gray
arrows represent ’widening,’ i.e. a less synchronous wave front. The right diagrams depict a later moment
in the simulation, where a notable dyscrepancy is seen between the spiking neuron network (right middle)
and the neural field (right bottom). Parameters: a = 30, pcon = 0.8, c1 = 0.6, c2 =�0.2, µ1 = 3, µ2 = 0.5,
t0 = 10, v = 5�1, a = 0.02, b = 0.2, c ⇠ N(�50,1), d = 2, I0 = 6.

time. Also, the ‘broadening’ of wave fronts occurs, where neurons fire less coherently, as
is designated by the gray arrows, None of these effects are seen in the neural field model.

The discrepancy between both models is more apparent at a later point in time, c.f. the
right column of diagrams in Figure 5.7. While the dominant frequency of the waves is
preserved, the shape has become quite different. The neural field is dominated by rather
clear wave fronts, whereas the spiking neuron network appears less structured. A subtle
feature of the wave fronts is preserved though: the broken wave fronts at the top and bottom
the network, which are distinctly visible in the neural field, are, at closer inspectation, also
present in the spiking neuron network.

Finally we comment on the fracturing of the wave fronts in the neural field. The fact
that the wave fronts fall apart suggests that the spatial resolution of the discretization is
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insufficient. Whereas the low resolution will play an important role in this effect, another
reason should be considered too. At closer inspection, the proposed Izhikevich reduction
is essentially an oscillator of the relaxation type, i.e. its limit cycle arises due an interplay
of bifurcations of the layer problem with respect to the slow variable. Fenichel theory
prescribes that the limit cycles are particularly sensitive to perturbations whenever the
orbit is near one of these bifurcations [51]. Since the discretization of the neural field is
essentially a finite collection of relaxation oscillators, it is to be expected that the system
will, at some points in time, be more sensitive to perturbations than at other moments. This
might explain why the fragmentation is particularly observed at a point later in time rather
than at the beginning: after more periods have passed, it has become more likely that two
neigboring oscillators received a slightly different input while their orbits were close to a
critical point.

Another pair of simulations is depicted in Figure 5.8, this time with an “inverted wizard
hat” type of connectivity. Furthermore, the spatial discretization now incorparates 120
mesh elements, compared to 60 in all other simulations.

At first glance we note that the correspondence between both models is much better
than in the previous case, particularly because of the wave fronts which have remained
well defined over the course of time. Furthermore it is seen that at the beginning of the
simulation the neural field is able to capture some of the key features of the spiking neu-
ron network, in particular the phase advancing of the lower half of the network and one
position at which the wave front tends to break. Later in the simulation, i.e. right column
of diagrams, we observe that the wave front of the neural field has broken several times
already, and that another breakline is imminent just below the middle line (indicated with
arrow). Although the simulation is performed at an increased resolution, the wave front
is still deteriorated, suggesting that wave breaking is independent of resolution. Indeed,
this idea is strengthened by the fact that the spiking neuron network also seems to have
a broken wave front. Hence, we conclude that wave breaking is a systemic feature of the
system and it should therefore not be obliterated from the analysis.

Therefore, we focus on the breaking of waves more detailedly: first a qualitative de-
scription of the phenomonon and consequently we speculate on the possible underlying
mechanism. Figure 5.9 depicts the phase difference q of a wave front with respect to some
global oscillation of the system. The horizontal axis of each diagram represents a subin-
terval of the one dimensional domain W . Here (I) shows an ‘intact’ wave front, i.e. a wave
front which has not broken until a specific moment, and hence, the phase difference q is
merely constant. At a certain point in time, one part of the wave advances its phase faster
than the remaining part, such that two distinct wave fronts arise, c.f. (II). Since, due to
the formulation of the system, continuity is preserved, a breakline appears, i.e. an interval
where the phase of the wave front takes intermediate values: this region is marked gray.
Note that if this region is small, the spatial discretization might not be able to capture this
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Fig. 5.8 Comparison of a network of Izhikevich neurons (top two rows) and the corresponding neural
field (bottom row). At the beginning of the simulation (left diagrams) both networks show qualitative
comparable behavior: in particular the phase advancement of the wave front near x = 0.8. Later in the
simulation (right diagrams) the comparison is less clear, especialy since the wave front in the neural field
(right bottom) has broken several times already. The black arrow indicates a position where the temporal
evolution of a breakline is shown. However, the spiking neuron network (right top and middle) suggest that
wave breaking also occurs naturally in the detailed model. Parameters: a = 10, pcon = 0.9, c1 = 12.5, c2 =

�25, µ1 = 2, µ2 = 5, t0 = 40, v = 10�1, a = 0.01, b = 0.2, c ⇠ N(�55,1), d ⇠ N(8,0.1), I0 ⇠ N(10,0.1).
The number of mesh points of the neural field was set 120.

region and, hence, the breaking appears as a discontinuity in the simulations. The part of
the wave front which advanced with repest to the remaining part, can move ahead one half
or one full phase allowing both wave fronts to synchronize again, c.f. (II)-(IV), apart from
the breakline. Furthermore, we typically observe that the width of the breakline diminishes
as the phase difference between the wave fronts decreases: see (IV) and (V). This suggests
that at some point in time the width of the breakline might become negligible, such that
the states (I) and (V) are almost identical. Hence, another wave break could be initiate, of
which the result is depicted in (VI). This illustrates that, when this phenomenon occurs
recurrently, absolute continuity of the solution might be lost.
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Fig. 5.9 Caricature illustrating a possible mechanism for wave breaking. The local phase difference q of
the wave front, with respect to some global oscillation, is plotted for an subinterval of W . (I)-(V) shows
how the phase differences might evolve when a wave breaks, gets ahead half period and synchronizes
again with the remaining part of the wave front. (VI) illustrates that this phenomenon can be recurrent,
which might eventually lead to a loss of absolute continuity. Whenever the breakline (i.e. marked region) is
narrow, the effect might appear as a discontinuity when discretized. See text for a more detailed description
of the processes playing a role in the phenomenon. Note that the phase difference q remains, despite the
jumps seen in the diagrams, continuous since it is considered on the cylinder, i.e. modulo p .

The mechanisms that underly the wave breaking are not clear at this point and further
analysis is required to characterize the phenomenon in more detail. Instead we hint on
a particular process: first of all, it appears that the formation of wave fronts is global
property of the system. This follows not only form the fact that wave fronts continue
to exist for extended periods of time (as opposed to desynchronized activity in which
neurons fire seemingly uncorrelated), but it is strengened by the observation that broken
wave fronts have the tendency to restore their synchrony, either in-phase or anti-phase,
at a global scale — apart from a negliable the breakline. But as the orbit approaches a
synchronous solutions, it appears that other mechanisms come into play which are in favor
of wave breaking. In this respect, wave breaking and, consequently, the restoration of
broken fronts show correspondence with a homoclinic orbit: a particular state might attract
nearby solutions, but as orbits near this state, they are repelled into a another direction.

5.5 Discussion

We have demonstrated that the prevalent procedures for condensing a network of spiking
neurons to a neural field, such as [133, 2, 99, 98, 80, 15, 16], can be expanded to more
general single cell models than the commonly assumed (leaky) integrators. The proposed
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method consists of two distinct procedures: first temporal averaging is performed such
that we, for each neuron, specify the rate at which action potentials are generated rather
than the precise timing of each spike. Secondly, spatial averaging can be applied when the
network has a particular spatial structure.

No general procedure exists for temporal averaging of a single cell model, but we show
by example that is not necessarily limited to leaky integrators. Indeed, we show that the
firing rate of an Izhikevich neuron [68] can be accurately mimiced by a dynamical system
that leaves the subthreshold dynamics intact. The reduction matches quantitatively with
the original model and it is able to capture more advanced types of spiking behavior, such
as bursting and rebound spikes/bursts.

Such a single cell firing rate reduction can be extended across a spatial domain to repre-
sent a population of neurons. The connectivity between the neurons can be in some cases
be condensed due to spatial averaging. Therefore it is required that the network is a ran-
dom graph: the probability of having a connection between two neurons is independent
of any other connections in the network and, furthermore, it depends only on the position
of the source and target neuron, in a continuously differentiable manner. Similarly, the
synaptic weights of each connection are also assumed to be independent random variables
which only depend smoothly on the positions of two connecting neurons. These particular
assumptions exclude the possibility to condense networks whose structure is not entirely
random, e.g. small-world and scale-free networks: both of which arise in prevalent detailed
models [92].

Next to describing the general assumptions and premises of the lumping procedure,
we also show how well the proposed reductions relate to the underlying spiking neuron
network. This is primarily done by comparing simulation results of both models. It is
first shown that the reduction for integrate-and-fire neurons in very accurate: not only
the asymptotic spatiotemporal pattern is reproduced, but subtle features of the transient
behavior too.

Extended with spike frequency adaptation, neural fields are capable of generating
breathers [52]. Indeed, we are able to replicate this pattern in the current setting, which
also incorporates space dependent delays. We find that for our particular choice of the pa-
rameter regime that the region in which the breather exists is fairly small. Therefore, this
particular solution is not observed in the corresponding spiking neuron network. Other
attractors, on the contrary, such as a stationary bump and an assymmetric breather are
genuinely reproduced.

Although the firing rate reduction of a single Izhikevich neuron is accurate, the corre-
sponding neural field is less so. Wave fronts formed by synchronously bursting neurons
can break or otherwise deteriorate in both the spiking neuron network and the neural field.
The breaking of wave fronts has been reported before with respect to a discrete chain of
weakly coupled relaxation oscillators [104]. Since the reduced Izhikevich model is indeed
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an oscillators of the relaxation type, it appears that this phenomenon is related to this kind
of oscillators. Hence, further mathematical analysis of spatial networks of these oscillators
is required in order to understand the processes involved in the breaking of wave fronts.
Consequently, this analysis will be valuable for improving the neural field formulation
with exhibit wave breaking.

Indeed, the framework rooted on sun-star calculus, as proposed in [118], appears to
be a convenient setting for characterizing the phenomenon. Based on empirical findings,
however, we suggest the possibility that recurrent breaking of wave fronts can result in a
loss of absolute continuity. In this particular case, the asymptotic solution might contain a
fractal structure of some sort, which is likely to hinder its analysis.

Hence we can conclude that neural fields have the potential to capture more realistic
types of spiking behavior, such as exhibited by the Izhikevich neuron. In pursuit of a
suitable neural field reduction, which is accurate as well as workable, this work offers
promising explorative results. We show that it is required to refine the aspects of both
modeling and mathematical analysis in order to achieve such a reduction.





Chapter 6
Conclusions and outlook

No single model would be able to capture all processes in the brain at once, since its
interactions are too numerous and too complex. Therefore, a sensible understanding of the
complex brain network can, due to its multiscale nature, only be attained by setting up
an entire hierarchy of models. In this hierarchy, each model is dedicated to a particular
phenomenon of the system, such that it provides an insightful and workable description
of that phenomenon. Ideally, every model has a close connection with others, in the sense
that it is based on currently existing models and that it can be validated using others. In this
light, it is common practice to apply some sort of averaging, or lumping, in order to relate
processes occuring at a smaller or faster scale to a coarser or slower scale. However, it
appears that not all models are combined in a straightforward manner, especially not those
involving many scales. The work presented in this thesis focuses on a particular class of
models which has revealed itself as being challenging to fit into the multiscale framework:
namely the emergent behavior of networks of neurons.

Since, until now, no generic procedure exists for reducing an arbitrary network of spik-
ing neurons to an insightful description for their collective action, an ad hoc approach
is often chosen, which emphasizes particular features of the network at hand. Indeed, in
chapters 2 and 3 it is shown that such an approach can be highly convincing: the behav-
ioral changes due to variations in two parameters matched qualitatively with the original
detailed model. For such reductions, however, since they are based on imprecise assump-
tions, it is generally not clear for what regions in parameter space they are legitimate and,
hence, it is required to routinely validate the reduced model with the original network. Yet,
these types of reductions are still valuable to determine ‘points of interest’ at which the
behavior of the underlying spiking neuron network can be studied in more detail.

Clearly, the development of a more general framework, which facilitates the lumping
of networks of spiking neurons, is desirable in the near future. Chapter 4, therefore, fo-
cuses on the establishment of a functional analytic setting for neural fields incorporating
transmission delay, showing that mathematical analysis of stability and bifurcations wi-
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htin these models is indeed tractable. Consequently, in Chapter 5, attention is given to the
formulation and derivation of such models from a network of spiking neurons. Explicitly
stating all assumptions made in the reduction, the framework is shown to facilitate the
inclusion of more complex cell dynamics.

While the preliminary results presented here are promising, there is a lot room for im-
provements and extensions. With respect to the abstract setting of the neural fields, for
instance, essential questions remain about the spectral properties as well as — more prag-
matically — the identification of a characteristic equation at spatially non-homogeneous
steady states. Furthermore, the proposed field of Izhikivich neurons should be studied
more analytically and, in particular, the phenomenon of wave breaking. On the side of
model formulation and derivation, it is highly recommendend to take into account stochas-
tic components within the derivation of lumped models. Such stochasticity might not only
accommodate for the unobserved processes in the network but also, with a proper correla-
tion structure, allow the reduction of networks with a particular structure, e.g. small-world
or scale-free.

Finally a word on the applicability of the work in this dissertation. Indeed, the ma-
jority of the presented results relates to conceptual and simplistic networks of spiking
neurons, but, with a proper understanding of these fundamental networks, the functioning
of more complex models might readily be explained. Both the application of dynamical
system’s theory, allowing identification of multistability and behavioral transitions, and
the utilization of elementary networks, which are only able to capture coarse features of
the network’s dynamics, encourage the modeling of epileptic seizures. This idea is further
strengthened by the observation that the spatial scale of the studied networks (approxi-
mately 1mm–10mm) coincides with the typical size of epileptic foci.



Appendix A
Proof of Proposition 4.26

We use the same notation as in Lemma 4.23 and its proof. We recall that the vector Z =

[z0,z1, . . . ,zN�1,1] is chosen such that the vector b = [b0,b1, . . . ,bN ], whose elements are
the coefficients of the characteristic polynomial P , is given by b = MT Z. Introducing
r := [1,r2,r4, . . . ,r2N ] we see that

P(r) = rT MT Z (A.1)

First we determine the vector Z, thereafter we split M, and we conclude the proof by
determining how Z acts on each factor in this decomposition.

Although Z can be obtained by applying the inverse of the Vandermonde matrix W , we
will proceed in a different manner. We start by rewriting (4.42) as
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(A.2)

For m 2N we define Pm := [p1, p2, . . . , pm] with pi 2 {0,1} for i = 1, . . . ,m. We set |Pm|=
Âm

i=1 pi equal to the number of 1’s in Pm. Using Gaussian elimination the solution of (A.2)
is found to be
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From the proof of Lemma 4.23 we recall the decomposition
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MT = elt0(l +a)I +2X (A.3)

where I is the (N +1)⇥ (N +1) identity matrix and X was defined in the proof of Lemma
4.23. Expanding the bilinear forms in the matrix X and moving the summation in front of
the matrix yields
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Now substitute (A.3) with (A.4) into (A.1) to obtain
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We observe that on the one hand,
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Hence by (A.5) it follows that
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which is equivalent to (4.46), in the sense that the two polynomials have identical roots.
Hence the proof is complete.



Appendix B
Comparison of Izhikevich model

Similar to the comparison described in section 5.3.3.3 An overview of the parameters used
in the following simulations is provided in Table B.1. Furthermore, k = 0.8, fmin = 0.1,
and

Iext(t) = I0 + Is(H•(t �200)�H•(t �500))

such that, next to a background current I0, an additional current of size Is is applied for
200 < t < 500. Remarks relating to specific simulations are given in the captions of the
corresponding figures.

Table B.1 Parameter values by simulation number

# a b c d I0 Is

1 0.02 0.2 �55 2 6 �12
2 0.02 0.2 �50 8 4 4
3 0.02 0.2 �55 4 10 20
4 0.03 0.25 �52 2 0 �10
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Fig. B.1 Tonic bursting neuron, which is suppressed with a negative current. In the latter half of the
simulation the inter-burst frequency of the reduced model is higher, which results in a phase difference
between both models. The average spiking behavior, however, is still preserved by the reduction.
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Simulation 2
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Fig. B.2 Tonic spiking neuron receiving a positive current. At the onset of the stimulus the reduction is
quite off, in particular the undershoot is smaller. This results in the number of spikes being estimated
wrongfully. Furthermore, one sees that during the stimilus the frequency of the reduced model is lower
than the original model. This is contrary to the frequency without stimilus.
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Simulation 3
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Fig. B.3 Mixed mode oscillations: switching from tonic spiking to chaotic upon input. Despite the chaotic
nature of the original model the average firing rate is accurately reproduced by the reduction. Although the
intrinsic frequency differs a lot, as can be seen by the large phase shifts, the spike number is still accurate.
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Simulation 4
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Fig. B.4 Rebound burst after hyperpolarization. The timing, subthreshold behavior and spike count are all
very accurate.
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Summary

No single model would be able to capture all processes in the brain at once, since its inter-
actions are too numerous and too complex. Therefore, it is common practice to simplify
the parts of the system. Typically, the goal is to describe the collective action of many
underlying processes, without studying each individually. The work presented here ana-
lyzes a particular class of models which has revealed itself as being challenging for such
simplifications: neural networks.

As no generic procedure exists for reducing an arbitrary network of spiking neurons, an
ad hoc approach is often chosen, which emphasizes particular features of the network. In
the first part of thesis, it is illustrated that such approaches can be convincing by showing
that the reduced model matches the original complicated model. Being based on impre-
cise assumptions, it is essential to routinely validate the reduced model with the original
network, reducing the effectiveness.

Therefore it is desirable to develop a more general framework, to facilitate the lumping
of networks of spiking neurons. The second half of this thesis focuses on the establishment
of a functional analytic setting for neural fields with transmission delay, showing that their
behavior can be characterized in full detail. Consequently, attention is given to the formu-
lation of such models from a neural network. Explicitly stating all assumptions made in
the reduction, the framework is shown to facilitate the inclusion of complex cell dynamics.

Although the majority of the presented results relates to conceptual and simplistic net-
works of spiking neurons, it is proposed that a clinical application towards epilepsy is
within reach. During seizures the majority of the neurons behaves very coherently, such
that elementary networks would be able to captures these dynamics adequately. In this
setting, the mathematical framework offers an effective setting for a complete characteri-
zation of the insult.
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Samenvatting

Omdat de processen in het brein talloos en complex zijn, is het niet mogelijk om deze
met slechts één model te beschrijven. Daarom is het gebruikelijk afzonderlijke delen van
het systeem in kaart te brengen, hetgeen doorgaans wordt bewerkstelligd door het ge-
zamenlijke gedrag van een groot aantal onderliggende processen te bestuderen — dit in
tegenstelling tot een aanpak waarbij alle processen individueel worden bestudeerd. Het
werk beschreven in deze dissertatie focust op een bepaalde klasse modellen waarvan is
gebleken dat ze moeilijk te vereenvoudigen zijn: neurale netwerken.

Aangezien er geen algemene methode bestaat om een willekeurig netwerk te vereen-
voudigen, is het doorgaans gebruiken om voor een ad hoc benadering te kiezen, zoals
beschreven is in het eerste deel van dit werk. Omdat een dergelijke vereenvoudiging be-
paalde eigenschappen van het netwerk uitbuit, kunnen deze modellen op overtuigende
wijze overeenstemmen met het oorspronkelijke, complexe model. De gemaakte aannames
zijn echter ondoorzichtig, zodat het noodzakelijk is om het vereenvoudigde model routi-
nematig te valideren, hetgeen de voorgestelde effectiviteit tenietdoet.

Zodoende lijkt het wenselijk om een algemenere methode te ontwikkelen die het ver-
eenvoudigen van neurale netwerken mogelijk maakt. In het tweede deel van deze thesis
wordt eerst een abstracte basis gelegd voor de analyse van neurale velden die reistijd van
pulsen in acht nemen. Vervolgens wordt de afleiding van dergelijke modellen zorgvuldig
bestudeerd, waaruit blijkt dat, na opsommen van alle aannames, het mogelijkheid is om
cellen met een complexe dynamica in het model op te nemen.

Ondanks dat een groot deel van de gepresenteerde resultaten gebaseerd zijn op ele-
mentaire neurale netwerken, zijn er genoeg mogelijkheden voor een toepassing. Tijdens
een epilepstische aanval is gedrag van de meeste neuronen namelijk zeer samenhangend,
zodat dit fenomeen inderdaad gevat kan worden met een rudimentair model. Onder deze
omstandigheden staat de eerder gelegde wiskundige basis toe dat deze modellen tot in
detail worden begrepen.
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1. Van de in hoofdstuk 4 genoemde voorwaarden voor het bestaan van de re-

solvente (Theorem 4.30, blz. 76), namelijk

· z 6∈ S,

· het karakteristieke polynoom Pz heeft 2N verschillende nulpunten,

· kj 6= ±ρi voor alle i, j ∈ {1, 2, . . . , N} en

· de matrix T (z) is inverteerbaar,

zijn de laatste twee redundant.

2. Neurale veldvergelijkingen die langzame tijdschalen en ‘bursting’ cellen in

acht nemen, zoals bijvoorbeeld beschreven in hoofdstuk 5, zijn bijzonder ge-

schikt om de stapsgewijze uitbreiding, welke typerend is voor een Jacksons

insult1, te karakteriseren.

3. De oorspronkelijke Wilson-Cowan vergelijkingen2 komen voort uit integraal-

vergelijkingen welke, in het geval van één excitatoire populatie, reduceren

tot

E(t+ τ) =

(
1−

∫ t

t−r

E(s)ds

)
S

(∫ t

0

α(t− s)[cE(s) + P (s)]ds

)
Hier representeert E(t) de ratio van actieve cellen op tijd t, r de refractaire

periode, S een sigmoidale functie, α de impuls respons van synapsen, c de

sterkte van recurrente excitatoire verbindingen en P de externe input.

Op dit punt in de afleiding heeft parameter τ nog geen fysische interpretatie

afgezien dat ze klein doch positief is, hetgeen suggereert dat de opvolgende

Taylor-expansie van E(t+τ) rond E(t) legitiem is. Echter zal deze laatste stap

de bijbehorende karakteristieke vergelijking kwalitatief veranderen, waardoor

men zich oprecht dient af te vragen of het vereenvoudigde model nog wel

aansluit bij het oorspronkelijke.

1A.J. Trevelyan, D. Sussillo, B.O. Watson and R. Yuste, Modular propagation of epileptiform

activity: evidence for an inhibitory veto in neocortex, The Journal of Neuroscience 26 (2006),

12447–12455.
2H.R. Wilson and J.D. Cowan, Excitatory and inhibitory interactions in localized populations

of model neurons, Biophysical Journal 12 (1972), 1–24.

2



4. Corticale netwerken met sterke laterale inhibitie, oftewel netwerken waarin de

lange horizontale verbindingen voornamelijk inhibitoir zijn, zullen ten gevolge

van schade aan het netwerk eerder geneigd zijn hyperexciteerbaar te worden

dan netwerken zonder laterale inhibitie.

5. Netwerken van stochastische neuronen en de approximatie dezer, door middel

van de Fokker–Planck vergelijking3, lijken een veelbelovende methode om de

onzekerheid van, danwel het gebrek aan waarnemingen te modelleren. Echter

wordt in deze afleidingen de coefficient van de lineaire ruis overschat omdat de

postsynaptische processen in het netwerk, nodeloos, als stochastisch worden

verondersteld.

6. Zij K een kubus met ribbe 1, dan is de afstand r tussen twee punten, elk

liggend op overstaande zijden van K, verdeeld met dichtheid f(r)

f(r) =


2r
(
r2 + π − 1− 4

√
r2 − 1

)
1 ≤ r ≤

√
2

2r
(
−r2 − 1 + 4

√
r2 − 2− 2 arcsin r2−3

r2−1

) √
2 < r ≤

√
3

0 elders

7. In acht nemend dat bepaalde netwerken van spoorwegen Turing-compleet

zijn4, in combinatie met het bijbehorende stop-probleem, kan men nooit met

zekerheid stellen dat hun trein überhaupt ooit zal aankomen.

8. To be with Art is all we ask...

Gilbert and George (1970)

3E. Wallace, M. Benayoun, W. van Drongelen and J.D. Cowan, Emergent oscillations in

networks of stochastic spiking neurons, PLoS ONE 6 (2011), no. 5, e14804.
4I. Stewart, The magical maze: seeing the world through mathematical eyes, Phoenix, 1998.
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